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1 Introduction

In this project, a simple traffic grid is built to mimic the traffic system at Manhattan in New York City.
Manhattan has 214 numbered streets and 11 numbered avenues[1]. The streets go in the East-West direction
while the avenues go from South-North. The directions here are all aligned with the Hudson river. In real
Manhattan, some streets and avenues can go in both directions. To simplify the problem, only alternating-
direction one way streets and avenues are considered.

The motivation of this project is to have a descriptive model to the Manhattan traffic flow and some quali-
tative insights about the capacity of the grid system.

2 Notations and assumptions

The notations used in this report can be found in Table 1. The assumptions of the model includes:
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• Our idealized Manhattan consists only one way avenues and streets. The length and the width for
each block is the same. So that the total length for each streets and avenues only depend on the
number of blocks in the vertical and horzental directions. An example grid can be found in Figure 1

• The cars on the streets and avenues are randomly assigned for the departures and destinations, cars
find the closest path toward its destination. The detail guidance system is discussed in Section 4.1.
Once the car reaches its destination, it automatically disappears

• There is no lights on the cross. To make the turns, there should be no cars within the range of
entering zoom on the other road or the speed of cars on the other road is 0. The detailed cross rules
can be find in Section 4.1.

• The speed of the car is calculated using the formula below:

v =


0 if d < dmin
vmax log(d/dmin)
log(dmax/dmin)

if dmin < d < dmax

vmax d > dmax

Figure 1: Schematic of the model system

Notation Discription Default value
Na Number of avenues 4
Ns Number of streets 4
dt Time step 1 second

initNc Initial car in the system 10
dmin Distance within which car stops 10 meters
dmax Distance above which cars goes at max speed 100 meters
vmax Maximum speed 5 m/s
cmax Maximum number of cars in the system Na*Ns*L*L/dmin
tmax Simulation time 5e4 seconds
L The length of each block 50 meters

rate The rate of imcoming cars per second 0.4 s−1

Table 1: Notations used in this report
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3 Object oriented implementation in the program

Object-oriented programming is a great implementation of a programming language to organize its data
structure. Since the system that we are trying to simulate contains a non-trivial grid structure, the object-
oriented programming style is employed to organize the variables thus making the life of coding easier.
Although object-oriented programming has the chance to blow up the run time of the program, considering
the sum of programming time, debugging time, and run time, I decide to adopt this method.

Going back to our model, only two variables are used - strs, aves to describes all the information for cars
in the system. That information includes their current locations, their current speeds, their departures, and
their destinations. In our model, the smallest unit is a car. For each car, it is described using a variable of
class Car. In Matlab, the self-defined class is supported. Figure 3 shows the structure of the class Car. It
has an encapsulated data field containing four variables which are regular arrays. depart, destin, loc,

speed represent the departure location, destination location, and its current location, and current speed
respectively. Besides its data field, it has a constructor method that takes the Ns and Ns as input and
constructs a car object with a random departure in the grid and a random destination.

Matlab also offers a handy functionality called object array which is used to represents each street or avenue
in this project. Object array is similar to the ordinary arrays in many ways, it is indexed using curly bracket,
it only allows the elements within one object array has the same type. So for each street or avenue, it is
represented by a 1 by n Car array, while the n is the number of cars on the street/avenue.

All the streets then constitutes the 1 by Ns cell array called strs, a cell array in Matlab allows any type of
elements within one cell and it is indexed using { }. Similarly, all the avenues constitutes aves.

Figure 2: aves and strs

In summary, in order to retrieve i’s car on the j’s avenue, we can just call:

aves{j}(i)

4 Self-guidance system and cross rules

4.1 Self-guidance system

Cars use a self-guidance system to guide themselves to the destination. This mechanism is being implemented
whenever there is a car arriving at the cross. The self-guidance system relies on a vector pointing from the
current location to the destination. At the cross, there are only two possible directions the car could go,
either to the avenue direction or to the street. In Figure 4, for example, the car is currently at the cross
star, and the direction vector is (−1, 3). The base vector on the street is (0,−1) and the base vector on the
avenue is (−1, 0). Since the dot product on avenue 1 is larger than the dot product on street -3. Thus, the
car will choose on the avenue no matter its previous location on the street or avenue.
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Figure 3: A diagram illustrating the class Car

Figure 4: The self-guidance system

4.2 Crossing rules

A magnified version of the cross is shown on the right of Figure 5. The orange areas with length 2dt× vmax

on both avenues and streets represent the cross area. Once a car enters this area, the mechanism will be
triggered as shown in the left of Figure 5. The second step of the flow chart has already been discussed in
Section 4.1. The third step judges if there are cars in the cross zoom on the other street/avenue. If there
are no cars, this car will go straight or make the turn as normal. Otherwise, we need to enter the 4th step.
The 4th step judges whether the car on the other cross all have zero speeds. If cars on the other road have
zero speed, meaning cars on the side are waiting for this car to cross, then this car will go first. Otherwise,
this car will stop to let the cars on the other road go first.

5 Simulation result

This section includes the experiments which have been run using the current model. The real Manhattan
size-214 by 11 is too big for the personal computer to run, thus this simulation only considers a much small
system which is 6 by 6. By varying the value of the incoming rate, the behavior of the total cars in the
system evolving with time is shown in Figure 6. When rate is lower, 0.2 or 0.3 for example, the car in the
system keeps fluctuating. However, when rate surpasses a certain critical value, the total number in the
system goes up forever which suggests a maximum capacity of the traffic system.

To better see the distribution of the number of cars in the system, 100 times of test with each one run
5e4 seconds. To validate the model, dt = 0.1, 0.5, 1 are adopted and plotted along with rate = 0.3, 0.35. In
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Figure 5: The Mechanism when a car arrives at the cross, the orange area on the right shows the cross zoom
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Figure 6: The number of car in Manhattan v.s. time with rate = 0.2, 0.3, 0.4 respectively

Figure 7, the blueish bins are the result from the rate = 0.3 while the reddish bins are the result from the
rate = 0.35. When we take a closer look at the edges at those peaks, the differences in the distribution of
different dt is not very significant which serves as a validation of our model.

The above experiments with rate = 0.3, 0.35 suggest a critical value for rate which will cause the crackdown
of the system. To better show this effect and get the critical value, the rate is randomly generated from 0
to 0.4 repeated several hundred times. The average speed of all the cars and the total number of cars at the
steady-state is recorded. Figure 8 shows the final number in the system and their average speed. As we can
see from this figure, the average speed of the car suddenly dropped to almost 0 around rate = 0.38 and the
number of the car also blows up very fast around the same point.

6 Discussion and limitation

The experiments above show a limited capacity for this traffic grid. There are still a lot of questions to
be explored using the current model. For example, an even close to the real-life scenario - the morning
peak and the evening peak. Since our program allows the assignment of the initial departure location, a
distribution of the car could be allocated to mimic the departure from the living area to the working area
for the morning peak and vise versa for the evening peak. Also, rate can be a function of time to mimic the
real cars generated in Manhattan.

One of the main limitations of this project is - we only build up the single lane in our model which is not the
case in real Manhattan. One possible direction is to build up some parts of road as double-way, also put the
traffic lights on which could better approximate the real Manhattan. The current model assumes that the
length and the width of each block to be the same. Another possible improvement is to make the ratio of
the width and the length and width to be adjustable. This adaptation can better approximate Manhattan’s
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Figure 7: Distribution of the number of cars with rate = 0.3, 0.35
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Figure 8: Final numbers of the cars and their speeds

elongated feature.

The traffic grid system is a common feature in American cities, it is not the case in other parts of the world,
however. For example, in Beijing or Chengdu, the traffic web is circular with a radiation pattern. There
are still some other cities, Chongqing, for example, doesn’t have any pattern due to its mountainous and
complex terrain. A future project may focus on how to simulate the traffic with any arbitrary structure.

7 Conclusion

To conclude from this project, a simple traffic grid was built to mimic Manhattan’s traffic system. The
cars in the system were randomly generated and disappear until the destination is reached. Despite the
oversimplified feature of the traffic system, the model successfully picked up the critical value which the
traffic breaks down for a 6 by 6 grid system. The object-oriented practice facilitates the organization of the
data and reduces the time for programming and debugging. Future work for this model may include some
more detailed implementation as discussed in Section 6.
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Appendices

A Car.m

1 % Car class define the properties for each car

2

3 classdef Car

4 properties

5 depart (2,1) double % depart location of the car

6 destin (2,1) double % destination of the car

7 speed (1,1) double % speed of the car

8 loc(2,1) double % loction of the car

9 end

10

11 methods

12 function car = Car(Na,Ns ,L)

13 if nargin == 0

14 car.depart = zeros (2,1);

15 car.destin = zeros (2,1);

16 car.speed = 0;

17 car.loc = zeros (2,1);

18 return

19 end

20

21 % random assign the departure and destination

22 car.depart = [randi(Ns) -1;randi(Na) -1];

23 car.destin = [randi(Ns) -1;randi(Na) -1];

24

25 % check whether the two are the same , if it is, generate new

26 % destin

27 while all(car.depart == car.destin)

28 car.destin = [randi(Ns) -1;randi(Na) -1];

29 end

30

31 car.loc = car.depart*L;

32 car.speed = 0;

33 end

34 end

35 end

B MoveManhattan.m

1 % move the cars in the city in dt time

2

3 function [aves ,strs] = MoveManhattan1(aves ,strs)

4 global dt vmax L dmax dmin Ns Na;

5 tol = vmax*dt; % the tolerance considering the two points to be the same

6

7 %% Dealing with avenues

8 for i = 1: length(aves)

9 ave = aves{i};% i is the index for the avenue

10

11 if isempty(ave)

12 continue

13 end

14

15 locs = [aves{i}.loc];
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16 locs = locs (1,:); % all the location of the car on this road

17 % sorting the locs and aves{i}

18 [locs , indx] = sort(locs);

19 ave = ave(indx);

20 aves{i} = ave;

21 delList = []; % the list of element to be deleted

22 dir = 1-2*mod(i,2);

23

24 for j = 1: length(locs)

25 car = ave(j); % the car on ave i and is j's car

26 % check whether the car arrives the destiny

27 direc = car.destin*L-car.loc; % vector pointing to the destiny

28

29 if sum(abs(direc))<tol % if the car reaches the destination

30 delList(end+1) = j;

31 continue

32 end

33

34 % calculate the distance to the front car

35 if (j+dir <= length(locs))&&(j+dir >0)

36 % if the front car exists

37 d = abs(locs(j)-locs(j+dir));

38 else

39 d = dmax;

40 end

41

42 if (mod(locs(j),L)>L-tol)||(mod(locs(j),L)<tol) % if the cars arrives at the cross

43 r = round(locs(j)/L)+1; % r: the index of the street at the cross

44 dir1 = 2*mod(r,2) -1;

45 % if (r==Ns&&i==1) ||(r==1&&i==Na)||(r==Ns&&i==Na)||(r==1&&i==1)

46 % % arriving at the four conners

47 % delList(end+1) = j; % delete this car on the str

48 % continue

49 % end

50

51 if (r==Ns && dir ==1) || (r==1 && dir==-1)

52 % if car goes beyond the bound of the ave

53 car.loc = [(r-1)*L;(i-1)*L+(dir1)*(tol+v(d)*dt)];

54 delList(end+1) = j; % delete this car on the ave

55 strs{r} = [strs{r},car]; % reappearing on the str

56 continue

57 end

58

59 if (dir*direc (1) <(dir1)*direc (2))

60 % if the car has a higher tendency to go on str

61

62 % decide whether there is car on the other way:

63 if ~isempty(strs{r})

64 sloc = [strs{r}.loc];sloc = sloc (2,:);

65 sspeed = [strs{r}.speed];

66 sspeed = sspeed(sloc >(sloc >car.loc (2)-dmin)&(sloc <car.loc(2)+dmin));

67 % speed of cars in the cross zoom on the other road

68 if any((sloc >car.loc(2)-dmin)&(sloc <car.loc(2)+dmin))&&...

69 (mod(locs(j),L)~=0) &&~any(sspeed ==0)

70 % if any car is in the entering zoom on the other road

71 aves{i}(j).speed = v(abs(car.loc(1) -(r-1)*L));

72 aves{i}(j).loc = [locs(j)+dt*aves{i}(j).speed*dir;(i-1)*L];

73 continue

74 end

75 end

76

77 % otherwise , enter the other road:

78 car.loc = [(r-1)*L;(i-1)*L];

79 delList(end+1) = j; % delete this car on the ave

80 strs{r} = [strs{r},car]; % reappearing on the street

81 else % else: move the car out of the cross zone

82 aves{i}(j).loc = [locs(j)+(dt*v(d)+tol)*dir;(i-1)*L];

83 end
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84 else % if not at the cross , continue going

85 aves{i}(j).speed = v(d);

86 aves{i}(j).loc = [locs(j)+dt*v(d)*dir;(i-1)*L];

87 end

88

89 end

90 if ~isempty(delList)

91 aves{i}( delList) = [];

92 end

93 end

94

95 %% Dealing with streets

96 for i = 1: length(strs)

97 str = strs{i};% i is the index for the street

98

99 if isempty(str)

100 continue

101 end

102 locs = [strs{i}.loc];

103 locs = locs (2,:); % all the location of the car on this road

104 % sorting the locs and strs{i}

105 [locs , indx] = sort(locs);

106 str = str(indx);

107 strs{i} = str;

108 delList = []; % the list of element to be deleted

109 dir = 2*mod(i,2) -1;

110

111 for j = 1: length(locs)

112 car = str(j); % the car on str i and is j's car

113 % check whether the car arrives the destiny

114 direc = car.destin*L-car.loc; % vector pointing to the destiny

115 if sum(abs(direc))<tol % if the car reaches the destination

116 delList(end+1) = j;

117 continue

118 end

119

120 % calculate the distance to the front car

121 if (j+dir <= length(locs))&&(j+dir >0)

122 % if the front car exists

123 d = abs(locs(j)-locs(j+dir));

124 else

125 d = dmax;

126 end

127

128 if (mod(locs(j),L)>L-tol)||(mod(locs(j),L)<tol) % if the cars arrives at the cross

129 r = round(locs(j)/L)+1; % r: the index of the ave at the cross

130 dir1 = 1-2*mod(r,2);

131

132 % if (r==Na&&i==1) ||(r==1&&i==Ns)||(r==Na&&i==Ns)||(r==1&&i==1)

133 % % arriving at the four conners

134 % delList(end+1) = j; % delete this car on the str

135 % continue

136 % end

137

138 if (r==Na && (dir)==1) || (r==1 && (dir)==-1)

139 % if car goes beyond the bound of the street

140 car.loc = [(i-1)*L+(dir1)*(tol+v(d)*dt);(r-1)*L];

141 delList(end+1) = j; % delete this car on the str

142 aves{r} = [aves{r},car]; % reappearing on the ave

143 continue

144 end

145

146 if (dir1)*direc (1) >(dir)*direc (2)

147 % if the car has a higher tendency to go on ave

148

149 % decide whether there is car on the other way:

150 if ~isempty(aves{r})

151 aloc = [aves{r}.loc];aloc = aloc (1,:);
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152 aspeed = [aves{r}.speed];

153 aspeed = aspeed(aloc >(aloc >car.loc (1)-dmin)&(aloc <car.loc(1)+dmin));

154 if any((aloc >car.loc(1)-dmin)&(aloc <car.loc(1)+dmin))&&...

155 (mod(locs(j),L)~=0) &&~any(aspeed ==0)

156 % if any car is in the entering zoom on the other road

157 strs{i}(j).speed = v(abs(car.loc(2) -(r-1)*L));

158 strs{i}(j).loc = [(i-1)*L;locs(j)+dt*strs{i}(j).speed *(dir)];

159 continue

160 end

161 end

162

163 car.loc = [(i-1)*L;(r-1)*L];

164 delList(end+1) = j; % delete this car on the str

165 aves{r} = [aves{r},car]; % reappearing on the ave

166

167 else % else: move the car out of the cross zone

168 strs{i}(j).loc = [(i-1)*L;locs(j)+(dt*v(d)+tol)*(dir)];

169 end

170 else % if not at the cross , continue going

171 strs{i}(j).speed = v(d);

172 strs{i}(j).loc = [(i-1)*L;locs(j)+dt*v(d)*(dir)];

173 end

174

175 end

176 if ~isempty(delList)

177 strs{i}( delList) = [];

178 end

179 end

180 end

C BuildeManhattan.m

1 % build the traffic system in Manhattan

2

3 global Na Ns initNc cararr L;

4 aves = cell(1,Na);

5 strs = cell(1,Ns);

6 for i = 1:Na; aves{i} = {}; end % initialize for avenues

7 for i = 1:Ns; strs{i} = {}; end % initialze for streets

8

9 % initialize the cars in Manhattan

10 if initNc >=1

11

12 while size(cararr ,2) <=initNc

13 car = Car(Na ,Ns,L);

14 loc = car.depart;

15 while any(all(cararr ==loc)) % if the new generated loc already exist

16 car = Car(Na ,Ns,L);

17 loc = car.depart;

18 end

19 cararr = [cararr ,loc];

20

21 if randi (2) ==1 % half chance to put this car on the Avenue

22 aves{loc(2,1)+1} = [aves{loc(2,1)+1},car];

23 else % another half chance to put it on the street

24 strs{loc(1,1)+1} = [strs{loc(1,1)+1},car];

25 end

26 end

27 end

10



D RunManhattan.m

1 % Run manhattan

2

3

4 global Na Ns L dt initNc cararr dmin dmax vmax;

5 Na = 4; % number of avenues

6 Ns = 4; % number of streets

7 cararr = [Na+1;Ns+1];

8 rate = 0.35; % incoming rate

9 dt = 1; % (second)

10 initNc = 10; % initial number of car in the city

11 L = 50; % the length of each block

12 dmin = 10; % distance within which car stops (meters)

13 dmax = 100; % distance above which cars goes at max speed (meters)

14 vmax = 5; % maximum speed (meters/second)

15 cmax = Na*Ns*L*L/dmin /10;

16 tmax = 5e4; %time of simulation (seconds)

17 clockmax=ceil(tmax/dt);

18

19 % initialize the city and see it

20 BuildManhattan

21 ViewManhattan(aves ,strs)

22 Nsave = [];

23 speedsave = [];

24

25 for i = 1: clockmax

26 if rate*dt <1

27 if rand <rate*dt % generate a car if the rate satisfies

28 [aves ,strs] = addCar(aves ,strs);

29 end

30 elseif rate*dt >=1

31 % The integer part of the car number

32 for j = 1:floor(rate*dt)

33 [aves ,strs] = addCar(aves ,strs);

34 end

35

36 if rand <rate*dt -floor(rate*dt)

37 % generate a car if the rate satisfies

38 [aves ,strs] = addCar(aves ,strs);

39 end

40 end

41

42 [aves ,strs] = MoveManhattan1(aves ,strs);

43 % if mod(i,100) ==0

44 % ViewManhattan(aves ,strs)

45 % drawnow

46 % end

47

48 %get the total number of cars and their average speed

49 [N,speed] = getprops(strs ,aves);

50

51 if N>cmax

52 error("Too many cars on the road!")

53 end

54

55 Nsave = [Nsave ,N];

56 speedsave = [speedsave , speed];

57

58 end
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