
A Flop Count Tool with an Example in
PLU Factorization

Shiyi Chen
Tutor: Leonardo T. Rolla

December 25, 2020

Abstract
We develop a new flop tool which can help to count floating point

operation(flops) in MATLAB/GNU Octave. The first two sections de-
scribe the flops and PLU factorization. In the following sections, we
introduce the PLU factorization — a method for solving linear equa-
tions. We discuss several possible ways to count flops on a PLU
factorization script in Matlab/Octave. One way we tried is using the
flop tool developed by Hang Qian. Although his tool does not give
us correct result due to its limitation on counting operations involv-
ing varying variable sizes, his code gives the flop count formulas we
needed in developing the new tool. Our new tool is compatible with
GNU Octave and it is licensed under GNU LGPL.

Contents
1 Flops 2

2 PLU factorization 3

3 Flop count — explorations and inspirations 4
3.1 Count flops using formulas 4
3.2 Existing flop count tool . 4
3.3 Count with help of original file 6

4 The new tool 6
4.1 The user guide . 7
4.2 Process, Implementation, Limitations, and Comparison . . 8

©2020 Leonardo T. Rolla, Shiyi Chen

1

https://creativecommons.org/licenses/by-sa/3.0/deed.en

5 Linear regression — run test on the new tool 11
5.1 The user guide for runtest.m 11
5.2 Results . 12

6 Conclusion 13

1 Flops
Flop stands for floating-point addition, subtraction, multiplication, and
division[2]. Flops can be used to quantify the amount of work needed to
be done for an algorithm to finish executing.

For example, below is a sample Matlab/Octave code which generates
a 5 by 5 matrix and multiplies the first two rows and the first column:

1 A = ones (5,5);

2 B = A(1:2 ,:) * A(:,1);

Above code takes 2*5*2 flops in total due to the matrix multiplication.
For a more general situation, Table 1 summarizes the flops needed for
some operations:

Operation Dimension Flops
a * x a is a scalar, x is a n by 1 array n
x * y x and y are both n by 1 arrays 2n
A * x A is m by n array, x is n by 1 array 2mn
A * B A is m by r array, B is r by n array 2mnr
A .* B A and B are both m by n arrays 2mn
A + B A and B are both m by n arrays mn
A - B A and B are both m by n arrays mn

A\b A is m by m array, b is m by 1 array about 2m3

3

Table 1: Flop count formulas

For the last row in Table 1, A\b returns the solution of the linear equa-
tion Ax = b. For the solving the n by n linear systems, flops roughly equals

to PLU factorization of the matrix A which is about
2m3

3
.

2

2 PLU factorization
PLU factorization is one way to solve the linear system with respect to
square matrices. In PLU factorization, a square matrix into three parts,
a lower triangular matrix L, an upper triangular matrix U , and a per-
mutation matrix P which keeps the track of row exchange. After the
factorization, the relation PA = LU holds. To solve the linear equation
Ax = b, we only need to calculate Pb then solve LUx = Pb. This process is
much easier than solving Ax = b directly because U is upper triangular
while L is lower triangular. The PLU factorization includes alternatively
applying row exchange and row replacement, in the mean while, uses
P,L, and U to keep the track of those changes, PLU stops at N −1 rounds
while N represents the size of the square matrix.

An intuitive way of thinking row exchange and row replacement is
considering these two elementary operations as two kind of matrix mul-
tiplications with elementary matrices. Suppose E is the row replace-
ment matrix and Q is the row exchange matrix, since PA = LE−1EU and
QPA = QLQQU, at each iteration we can set the new P,L, U as following[3]:

Pk+1 = Pk

Lk+1 = LkE
−1
k

Uk+1 = Uk

or

Pk+1 = QPk

Lk+1 = QLkQ

Uk+1 = QUk

We start PLU program by doing row exchanges and row replacements
using matrix multiplication. Although matrix multiplication is intuitive
to understand, it involves too many flops. Here is why: using all matrix
multiplications in algorithm, a row replacement takes one matrix mul-
tiplication while a row exchange takes four matrix multiplications. As
shown in Section 1, matrix multiplication is not efficient, so we may do
row exchange by switching the row and row replacement by substituting
the targeting rows. Script 1 takes a square matrix A as input and matri-
ces P,L, U as outputs.

The script consists of three functions. The main function uses a for

loop to perform row exchange and row replacement alternatively for N−1
times, exchange and replace perform row exchange and row replacement
respectively.

3

3 Flop count — explorations and inspirations

3.1 Count flops using formulas
Let the size of square matrix be n, here is how we count LU.m:

• Find all lines involving operations and execution times, locations
below are shown in Script 1:

line 08: for i = 1:sz-1

“−” executed once.
line 19: q = i - 1;

“−” executed n-1 times.
line 26: q = i + 1;

“+” executed n-1 times.
line 29: a = U(j,i)/u;

“/” executed
∑n−1

i=1 (n− i) times.
line 32: U(j,q:sz) = U(j,q:sz) - a*U(i,q:sz);

“−” and “∗” executed
∑n−1

i=1 (n− i) times respectively.

• Using the table in section one, we have the following formula:

flops =
n−1∑
i=1

n∑
j=i+1

(2(n− j) + 1) + n− 1 + n− 1 + 1

=
2

3
n3 − n2

2
+

11

6
n− 1.

This is the best method for PLU alone, but we went a more general
tool.

3.2 Existing flop count tool
The current flop count tool in Matlab was written by Hang Qian. This
flop count tool, a Matlab function named “FLOPS”, analyzes the .M file
line by line and tells users the flops at each line of the script and total
flops in the terminal. “FLOPS” provides a wide range of applications,
it supports both function and script. This tool also supports some op-
erations other than +, -, *, /, including some functions like lu, sum,

prod, sin. Moreover, the user can self-define the flop count rules in an

4

http://hangqian.weebly.com/

EXCEL file, the new rules override the current rules if there exists such
rules previously defined in the flop count tool program. Otherwise, the
tool adds the user defined rules in flop count.

Following the user guide, we generate the random matrices with sizes
from 1 to 40, run “FLOPS” and get the flops. Comparing the leading term
2
3
n3, the result given by “FLOPS” is far less than the leading term. The

reason for this error is that the PLU script written by us has hit a limi-
tation of “FLOPS” as stated in the user guide:

• Variable classes and matrix sizes cannot change anywhere in the
codes. A variable, once created, cannot be deleted (but its value
may change as long as it does not undermine matrix decomposi-
tion, say chol). A MAT file that stores all variables is required[1].

The general situation for this tool to fail is that the vector sizes change
within the file, this is because “FLOPS” supposes the size of the variables
unchanged in the whole file and the script takes the final sizes as their
actual sizes which is not the case in LU.m. Below is part of LU.m that
causes the problem, in line 5, we have used slicing in our code, although
it does not change the size of the variables, the slicing part U(i,q:sz)

changes in every iteration in the for loop. Since “FLOPS” only deals with
fixed sizes, the result given by this tool is inaccurate.

1 for j = q : sz

2 a = U(j,i)/u;

3 L(j,i) = a;

4 U(j,i) = 0;

5 U(j,q:sz) = U(j,q:sz) - a*U(i,q:sz);

6 end

Here is a code that shows the same problem:
1 U = ones (5,5); b = ones (5,1); i = 1;

2 a = U(i : 5, 1 : 5); c = a * b;

3 i = 3;

4 a = U(i : 5, 1 : 5); c = a * b;

As long as variable sizes change in the script, “FLOPS” will have a
great chance to fail.

5

3.3 Count with help of original file
We need a stable yet easy method that can give us a correct flop count to
analyze the complexity of the algorithm in the future. The first method is
suitable for the counting in PLU factorization, it may not be suitable for
future usage since we may dealing with scripts involving large amount
of computation; the second method cannot deal with the situations in
which variable sizes changing in the algorithm. Here is a more practical
way we count the flops:

• Create a variable named flop counter, declare it as global variable
since it needs to be updated within multiple functions, set it as 0.

• Make a copy of the original file, say LU tmp.m, whenever there is an
operation, add a flop count formula after the command which in-
volves the operations. For example, the formula for line 57 will be:

flop counter = flop counter + 2*(sz-q).

• Run the code.

The variable flop counter should be the amount of flops the code
takes.

This method gives us the same result as the computation done in sec-
tion 3.1.

Compared to the method in section 3.2, this method requires manu-
ally adding codes. We want an easy method, without adding any lines by
hand, which gives us the correct result.

4 The new tool
Inspired by Sections 3.2 and 3.3, we decide to start a tool which can
count flops correctly and does not require manual coding. We initially
coded in Octave and later we made it compatible with Matlab. For Octave
users, version 4.4.2 and above is suggested. The principle for this tool
is the same as the method presented in Section 3.3 — adding flop count

6

formulas line by line, but we let the flop count tool do the job.

The new tool is available in GitHub https://github.com/Eleven7825/

flopTool under GNU Lesser General Public License with version 3.0 or
later.

4.1 The user guide
To count flops, we need three things: m-file (function and script are both
acceptable), flop update.m, and flop script.m. We will use a script called
fileName.m as an example for the description. An step by step tutorial
script - easy runtest.m with an example script is available in the GitHub
repository.

1, Prepare all code within one m-file. If the script calls multiple functions
in different scripts, put all functions in one m-file.
2, Put this file in the same folder with flop update.m, flop script.m, go to
that folder, execute flop script("fileName.m") or flop script("fileName").

3, Notice the command window, Begin generating flop count script for

example ... indicates the starting to generate the temporary flop count
file. The prompt done! indicates the process terminates and there will be
a temporary file called fileName tmp.m generated under the same folder. If
warning appears, the program will tell the user which line in the original
file causes the problem. The user needs to check the line in the original
file and fix the error. There are two types of warning:

1) Warning: In line XX, unrecognized pattern indicates the flop ana-
lyzer crashed at XX line. For example, there may be some brackets miss-
ing which causes the program failing to read the variables. In this case,
the program will jump that line and continue counting the rest of the
script. The user needs to check whether the brackets are missing in the
line, then try running flop script.m again.

2) Warning: In line XX, can’t find left variable, assigning value 1 to

it. In this case, program does not find variables corresponding to oper-
ators in this line. The program will automatically assign 1 to that un-
known variable and continue counting in this line. The user need to
add brackets around the variable they want the program to count at the
original file and run flop script.m again, the temporary file will be auto-
matically overwritten for the second run.

7

https://github.com/Eleven7825/flopTool
https://github.com/Eleven7825/flopTool
https://www.gnu.org/licenses/lgpl-3.0.en.html

4, Run the temporary file, if the m-file is a function, enter the temporary
function signature, for example fileName tmp(A); if the file is a script, click
run. The temporary code should have the same output in the terminal
but with a slower speed. After executing, a variable called flop counter

should be created in the workspace.

4.2 Process, Implementation, Limitations, and Compar-
ison

Process The new tool passes fileName as parameter, the program finds
the file with this name under the same folder and reads the entire m-file
into n by 1 text cell array - each line in the cell contains a line of code,
this is done by function readText which is part of Qian’s work.

Next, the program will pass each non-empty, non-comment element
in the cell to fpExpt function. This function will detect all the opera-
tions within the line, then classify them into two categories: lu, sin,

cos, prod, sum, etc will be passed into the first category; basic addition,
subtraction, multiplication, division will be passed through the second
category. fpExpt — the main tool for the function will catch variables
corresponding to the operators based on the operator’s categories; then
assign the captured variables to the main function in string format. Fi-
nally, the main function will pass the operators, variables to the flop
count formula, generate a new text cell and write the new cell into the
temporary m-file.

When the user runs the newly generated m-file, the variables will be
calculated into numerical format based on the expression originally in
string format. The numerical variables will be passed into flop update.m,
an independent function. flop counter will be updated on a global level
based on sizes of input variables. flop update formulas are copied from
“FLOPS”. Future distribution should follow the GNU Lesser General Pub-
lic License and remains both license notices.

Implementations The core part of this tool is fpExpt, which functions
as a operation signs and variable names recognizer.

1) Method to get variable names.
First, the fpExpt function will change the non-numeric, non-alphabetic,

8

non-underscore characters into blank spaces. Next, it will call the string
split function to split the command string into a text cell. The string cell
contains the variable names needed to be recognized.

2) Method for fpExpt to determine the sequence of operation
The program will detect the operations with a higher priority first. The
priority is raise power > multiply or divide > plus or minus. The program
will add brackets around two variables after detection. If there are ad-
ditions or subtractions in later detection, the bracket will tell where the
variables which fpExpt need to recognize starts and ends.

3) Method for fpExpt to decide whether a pair of brackets functions as
slicing or indicator of the operational orders
fpExpt considers brackets around operators as order indicators while
other situations slicing.

4) The method to find the other corresponding bracket location for given
brackets.
Function fpExpt will call findbrak function, this function will find another
side of the bracket and return the location of the other side of the bracket.

5) Method to determine whether an operation symbol is between two
quote marks or not
This is done by function isBetPr. This function will find all the quote
mark locations, create an array contains all indexes which are in the
quote marks. After a comparison with the operation symbol’s indices, it
determines whether the operators are in two quote marks or not.

Limitations 1) The flop count script will be more time consuming than
the original file.

2) The new tool inherits the counting formulas from “FLOPS”, it has the
same limitations for counting operations1.

3) Outside functions are not parsed, users need to put all functions in
1For example, logical operations(|, &), relation operations(>,>=) are not counted.

Transpose signs and indexing are recognized but not count into total flops. Different
from Qian’s, we count negations (A = −A) as subtractions with corresponding sizes. In
this case, we consider the left variable unrecognizable, thus, value 1 was assigned to
the left variable. In Matlab/Octave, the flop count is equivalent to ones(size(A))-A.

9

the same file.

4) For lu, sum, etc, only one argument is supported.

Comparison with “FLOPS” Compared to “FLOPS”, the new tool may
be more convenient to use in the sense that it does not need to save or
load MAT files or profiling. We hope future users can find it useful. Our
code incorporates part of code by Qian. Table 2 was made to help the
future users decide which tool to use based on their purposes.

The new tool “FLOPS”
The new tool may be more conve-
nient for counting with changing
input variable sizes in the sense
that it does not need profiling, sav-
ing or loading MAT files.

Need profiling, saving and loading
MAT files.

Longer elapse time for the tempo-
rary counting tool, which makes
our tool not suitable for longer
scripts.

Same elapse time with the original
file.

Cannot recognize functions con-
taining multiple arguments.

Can accept some multiple argu-
ments like sum(A,2).

Cannot recognize functions han-
dles.

Can recognize bsxfun.

Cannot know exact flops in each
line.

Display flops at each line and their
executed rounds.

Support variable changes and slic-
ing.

Does not support variable changes
and slicing.

Support multiple functions in a
script but not nested.

Support nested function.

Change the rules in TXT file. Change the rules in EXCEL file.
Support Octave > 4.2.0 and Mat-
lab.

Only support Matlab.

Generate transparent auditable
code in a separate .M file.

Display the flop count on the com-
mand window.

Table 2: A comparison with “FLOPS”

10

5 Linear regression — run test on the new tool
The script runtest.m functions as a test code for our new tool and also
testifies how well the flops curve of self-written PLU script approximates

the leading term
2n3

3
. An important feature for runtest is that users have

freedom to specify the parameters if they want to change certain vari-
ables in the workspace.

5.1 The user guide for runtest.m
To test this script, after click run, detailed execution information will ap-
pear on the command window. The current parameters in the workspace
will also be displayed. For the first run, the program will take the default
values. The user can change the default values in the workspace, then
the program will take user-defined value for the execution. Table 3 dis-
plays all default values and their functionalities.

Parameters Discription default
n The number of matrices to be

tested (double).
6

foldername The name of targeting output
folder (string).

“output”

fileformat The format pass to the saveas

function (string).
“epsc”

filename1 The name for the plot (string). “PLU-flops1.eps”
show plot 0 represent popping the figure

window,1 otherwise (double).
0

Table 3: The default variables for runtest.m

The runtest.m mainly does the following:

1) Call flop script.m and create the temporary flop count file called LU tmp.m
under the current folder.

2) Generate a set of random matrices with sizes from 20, 21 to 2n−1. n is by
default 6.

11

3) Set the flop counter as 0, perform flop count on these matrices by call-
ing LU tmp(A), while A is overwritten repeatedly by those matrices with
increasing sizes.

4) Plot the relationship between the size of A and flops on the log-log
scale, create a subfolder called output within the current folder if such
folder does not exist, save the newly generated file in this folder with de-
fault with format EPS.

5) Do linear regression on the log-log scale without considering the first
three points, plot all the points in blue circles while the regression line in
red. Save the plot in EPS in the output subfolder, display the regression
relationship formula.

5.2 Results
The following result was produced by setting n = 10. The linear regression
gives us flops = 0.620505 ·N3.012631. And the plot of the runtest is shown in
Figure 1. When n = 6, the regression formula is flops = 0.599507 ·N3.024663.
This seems consistent with the formula we get from Section 3.1 which
indicates the leading term is

2

3
N3.

100 101 102 103

N

10-2

100

102

104

106

108

F
L
O

P
S

FLOPS of PLU vs matices sizes N with regression line

Figure 1: PLU-flops2

12

6 Conclusion
In this report, we describe an important factor to quantify the complex-
ity of an algorithm - flops. Then, we move on to describe several ways to
count flops of PLU factorization - a method to solve the linear equations.
One way we tried is the flop counting tool in Matlab/Octave developed by
Hang Qian. Although this tool (“FLOPS”) does not give us the accurate
flop count (“FLOPS” fails when there are variables with varying sizes in
the script), “FLOPS” helps us to develop the new flop count tool.

In Section 5, we conclude that our new tool gives the exact result
comparing to the accurate count. Moreover, our new tool can work on
Octave which is a free software under GPL. However, our tool has long
elapse time, this defect may be more significant for longer scripts. There
are many possible improvements for our flop tool, for example, solve the
long elapse problems, support for functions containing multiple argu-
ments, make the flops at each line available, also, flop counter=0 should
be done by the user rather than by the generated code. We cannot solve
all those problems at once because of the time limitation. We made our
tool available under GNU Lesser General Public License and all source
codes can be found at https://github.com/Eleven7825/flopTool. We hope
future users could have a choice of flop count tools best fitting their
needs.

References
[1] Hang Qian (2020). Counting the Floating Point Operations

(FLOPS) (https://www.mathworks.com/matlabcentral/fileexchange/
50608-counting-the-floating-point-operations-flops), MATLAB
Central File Exchange. Retrieved November 5, 2020.

[2] Gene H. Golub. Matrix Computations. 1983.

[3] Leonardo T. Rolla. PLU Fractorization. 2020.

13

https://github.com/Eleven7825/flopTool
https://www.mathworks.com/matlabcentral/fileexchange/50608-counting-the-floating-point-operations-flops
https://www.mathworks.com/matlabcentral/fileexchange/50608-counting-the-floating-point-operations-flops

Script 1 The shortened code for PLU factorization

1 %PLU factorization

2

3 function [P,L,U] = LU(A)

4 ... Find size of the matrix A

5 ... Initialize P_0 ,L_0 ,U_0

6

7 % proccess of PLU

8 for i = 1 : sz -1

9 [P1 ,L1 ,U1] = exchange(P,L,U,i);

10 [P2 ,L2 ,U2] = replace(P1,L1,U1,i);

11 ... Update P1 , U1 , L1

12 end

13 end

14

15 %row exchange function

16 function [P,L,U]= exchange(P,L,U,i)

17 global sz

18 ... Find maximum absolute entry in a column

19 q = i-1;

20 ... Perform exchange

21 end

22

23 %row replacement function

24 function [P,L,U] = replace(P,L,U,i)

25 global sz

26 q = i+1;

27 u = U(i,i);

28 for j = q : sz

29 a = U(j,i)/u;

30 L(j,i) = a;

31 U(j,i) = 0;

32 U(j,q:sz) = U(j,q:sz) - a*U(i,q:sz);

33 end

34 end

14

	Flops
	PLU factorization
	Flop count — explorations and inspirations
	Count flops using formulas
	Existing flop count tool
	Count with help of original file

	The new tool
	The user guide
	Process, Implementation, Limitations, and Comparison

	Linear regression — run test on the new tool
	The user guide for runtest.m
	Results

	Conclusion

