
Finding Few Largest Eigenvalues

Shiyi Chen
Tutor: Leonardo T. Rolla

January 21, 2021

Abstract

Power Method (PM) allows us to find the largest eigenvalue of real
square matrices of real square matrices. By changing the algorithm
of PM, the resulting algorithm - Inverse Power Method (IPM) enables
us to find the eigenvalues other than the largest one. In this report,
we firstly describe the IPM and code it in Matlab/Octave. To test the
new function of IPM, we elaborate on how IPM allows us to find eigen-
values closest to a point for symmetric matrices. We then move on to
elaborate on how we find the few largest eigenvalues for symmetric
matrices using the IPM and the searching scheme we devised. The
method succeeded in finding all the 10 largest eigenvalues of 30× 30
random symmetric positive matrices in 98.4% sampled randomly.

Contents
1 Inverse Power Method 2

2 Tests on IPM 3
2.1 Random number generators 3
2.2 The first runtest . 4
2.3 The second runtest . 5

3 Improved searching scheme for the second round for the sec-
ond test 7
3.1 Measure the Cosine Values between the vectors 7
3.2 Test for runtest.m . 10
3.3 Drawback . 10

©2020 Leonardo T. Rolla, Shiyi Chen

1

https://creativecommons.org/licenses/by-sa/3.0/deed.en

4 Conclusion 10

1 Inverse Power Method
IPM is a variation of the Power Method which can be used to calculate
the eigenvalues not limited to the one with the largest magnitude but all
eigenvalues for the symmetric floating-point random matrices. PM starts
by picking a vector, call it v0, then apply the linear operator A to vk(k ≥ 0)
(v′k+1 = Avk) and normalize (vk+1 = v′k/||v′k||) iteratively. We keep on doing
those two steps until vk stays in the same line before and after applying
A. PM finds the largest eigenvalue for any real square matrices. In the
rest of the report, we mean small or large of the eigenvalues by referring
to their absolute values.

By adapting PM, we can find all eigenvalues in the spectrum of the
symmetric floating-point random matrices. Suppose λ is an eigenvalue
of non-singular operator A corresponding to eigenvector v, in other words,

Av = λv. (1)

Suppose µ is a real number satisfying µ ∈ [λmin, λmax]. µ is not equal to
any of the eigenvalues of A. Thus, Equation (1) can be written as

(A− µI)v = (λ− µ)v

(A− µI)−1v =
1

λ− µ
v.

(2)

Compared to PM, IPM multiplies (A−µI)−1 instead of A in each iteration.
IPM finds the largest eigenvalue of (A − µI)−1, this corresponds to the
smallest λi−µ (λi belonging to the spectrum of A). As a result, IPM finds
the eigenvalue λi closest to µ.

Let λ1, λ2, λ3, · · · , λn be the eigenvalues listed from the largest to the
smallest. How fast PM reach the eigenvalue and eigenvector depends on

the ratio of the largest eigenvalue and the second largest eigenvalue (
|λ1|
|λ2|

)

[2].

For IPM, the rate of convergence depends on

|µ− λ′2|
|µ− λ′1|

, (3)

2

while λ′1, λ′2 are two eigenvalues of A which are closest to µ in magnitude.
By Equation (2), in each iteration, we have

xk+1 = (A− µI)−1xk

(A− µI)xk+1 = xk.
(4)

Equation (4) requires us to apply a linear solver in each iteration. We use
the Matlab/Octave inbuilt linear solver to solve the linear equations in
each step for optimal efficiency.

In each iteration, we measure the error by

error = ||xk+1 − xk||∞, (5)

while xk+1 and xk are two normalized vectors in adjacent iterations. This
measurement is equivalent to find the entry with largest magnitude of
the difference vector (xk+1 − xk). We measure error in this way because
it gives us the difference of the vectors in two adjacent iterations. This
difference will be zero if both of them are eigenvectors.

The code for IPM is listed in Script 1. This Matlab/Octave function
takes the square matrix A, starting vector x0, initial guess of the eigen-
value mu, allowed maximum iterations for IPM m, and the allowed error e

as input. The result vector x and result value eigen as output.

2 Tests on IPM
We made two tests for the IPM function, the first one tests whether IPM
can find the nearest eigenvalue around µ. The second one finds the few
largest eigenvalues for A.

2.1 Random number generators
The two tests generate the random matrices in the same way. Before
digging into the details of two tests, let first look at how we generate the
matrices.

We use rand function to generate the random matrices for compati-
bility in Octave and Matlab. We set the key value of the generator to be
’twister’ in the rand that corresponds to the random number generator

3

Mersenne Twister[1]. Mersenne Twister is the updated random number
generator implemented in both Octave and Matlab. Although we can set
the random number generator in Matlab and Octave both to be Mersenne
Twister, also set the value of seed to be the same in Matlab and Octave,
the Octave random matrix sequences differ from the Matlab one. Since
the range of each entry is from 0 to 1, the scales of eigenvalues are the
same for Matlab and Octave.

As discussed above, we generate the random matrices use the follow-
ing code:

rand(’twister’,seed);

a = rand(n,n);

A = a’*a;

In the first line, we set the generator to be ’twister’ and set the value
of the seed to be seed. In the second line, we generator the n by n random
matrix a with each entry range from 0 to 1. Finally, we let A = aTa.

2.2 The first runtest
We name the first test easy runtest.m. This test finds the nearest eigen-
value around µ. To achieve that, the first test does the following:

• If there are no variables with the same names in Table 1, create
such variables in the workspace with default values as shown in
that table.

• Generate random matrices as discussed in Section 2.1.

• Use Matlab/Octave function eig to find all eigenvalues for A.

• Use the IPM to find the nearest eigenvalue of µ. If the program fails
to converge, i.e., ERR>e when the maximum iterations m reached,
the prompt “Maximum iteration reached, exiting the program.” will
appear in Report.txt.

• Write all the data into a file called Report.txt with detailed expla-
nations, including eigenvalues found by IPM, eigenvalues found by
eig function, and the iterations IPM before the program terminates
in each trial of IPM.

4

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Variable name Description Default values
n The size of the square matrix. 100
m Maximum iteration for IPM al-

lowed.
500

mu xk+1 = (A−µI)−1xkin each iteration
of IPM.

n/2

e If ||xk+1 − xk||∞ ≤ e return xk+1. 0.01
display The number of eigenvalues of A

found by eig function displayed.
3

seed The seed in the random number
generator

3

Table 1: The default values for easy runtest.m

In order to run IPM on non-symmetric matrices, we let A = rand(n,n)

directly in the easy runtest.m. There may exist some pairs of non-real
eigenvalues for non-symmetric matrices. We find that when the closest
eigenvalues are two conjugate complex eigenvalues (we use norm function
to calculate the norm of the complex eigenvalues, if they are conjugate,
they have the same norm), the program fails to converge. The reason is:
when a pair of complex eigenvalues is closest to µ than any other eigen-
values, |µ − λ′1| = |µ − λ′2|, since λ′1 and λ′2 are conjugate (λ′1 = λ̄′2). This

implies
|µ− λ′2|
|µ− λ′1|

= 1.

The easy runtest.m sometimes fails to converge. Using the default val-
ues as shown in Table 1(size of matrix is 100 by 100,) we find that when
the value calculated by Equation (3) is close to 1 (for example 0.98), the
method is likely to fail.

2.3 The second runtest
PM.m is the Matlab/Octave code of Power Method, we will use it in the
process of finding the largest eigenvalue. In the second test runtest.m,
we use IPM to find the few largest eigenvalues of given real symmetric
square matrices A. Same as the first test described in the last section,
runtest.m also has the default variables as listed in Table 2.

Real symmetric matrices have exactly n eigenvalues. Since we are
using the floating-point random function to generate the matrices, the

5

probability to generate the eigenvalue with multiplicity more than one
equals zero. Thus, all our choices should converge to exactly n points.
In practice, we find those points IPM converged to are clustered around
the accurate eigenvalues found by eig function. Due to this fact, we
can start by finding the largest eigenvalue by calling PM function, also
finding the smallest eigenvalue by using IPM with µ = 0. There are two
rounds for the runtest.m. In the first round, we start choosing our µ
from the largest eigenvalue, then use IPM to search for other eigenvalues
other than the largest one. This process terminates either µ reaches the
smallest eigenvalue or we have found findn points where IPM converge
to. Our choice of µ is equally distributed on a linear scale. We initially
choose µ in log-linear scale, for example µ = 1.01, 1.012, 1.013 · · · . We find
the log-linear scale does not correspond to the real distribution of the
eigenvalues, it’s too dense while µ is close to 0 and too sparse for µ close
to largest eigenvalue, this scale may cause the repeating eigenvalues (two
slightly different values which correspond to the same eigenvalue appear
in the eigenvalue list) for the small eigenvalues and missing eigenvalues
for the large eigenvalues.

We will consider two points where IPM converges corresponding to
two different eigenvalues if the distance between them is larger than e1

or e2 depending on the position of the interval. For the measurement of
distance, we take a relative measure: suppose we already find λ1, λ2 as
the two largest eigenvalues. If p is the point where IPM converge to, then
the relative distance between p and λ2 can be calculated as:

|λ2 − p|/|p|

The problem for the first round of searching is that some eigenval-
ues are missed in the eigenvalue list, for example, the program omits
the second largest eigenvalue and considers the third-largest eigenvalue
as the second largest eigenvalue. To solve this problem, we devise the
second round of searching. Since we have findn points in the eigenvalue
list, there are (findn - 1) intervals between findn eigenvalues. In each
of those intervals, we put µ at positions 0.4 and 0.6 times the length of
that interval. If IPM converges to different points other than the two ends
of the interval, we will append those points to the end of the eigenvalue
list. Finally, we will get a new eigenvalue list. We do above process until
the new eigenvalue is no longer found in the new iteration.

Pseudo-code 1 includes more programming details for the process dis-
cussed above.

6

To get more information on which choices of µ fail to converge, we
printed that µ on the terminal as long as we have the iterations for those
numbers exceeds m.

3 Improved searching scheme for the second
round for the second test

3.1 Measure the Cosine Values between the vectors
We mentioned that using the current searching scheme, we may en-
counter the situation when the tolerance is too small which causes re-
peated eigenvalues in the eigenvalue list. We try to solve this problem by
changing the way of measuring the difference between the two eigenval-
ues, but we did not get the desired result.

Originally, we measure the difference directly through the difference
between the two values. Later, we realize that the vectors IPM function
returned could also be used as the way of measurement.

We begin by calculating the cosine values of angles between the vec-
tors in eigenvalue list created in the first round of runtest.m. Here is the
formula we used:

cosα =
v1 · v2

||v1|| · ||v2||
From the testing result, the cosine value of adjacent vectors in the first

eigenlist are close to 0, ranging from 10−6 to 10−11. This can be explained
by the real spectrum theorem, we generate the matrices by letting A = aTa
which implies that A is symmetric and A is orthogonally diagonalizable.
Hence, all eigenvectors of A are orthogonal to each other.

We do the trick in the second round of searching by adding this crite-
rion in distinguishing the eigenvalues. In theory, there are two cases for
the cosine value of the angles with two points on the end of the interval:
1) Both of the cosine values are close to 0, which corresponds to the sit-
uation when the new point IPM found is different from previous points
in eigenlist.
2) One of the cosine value is close to 0 while the other one is close to 1.
In this case, IPM finds the repeated eigenvalue either corresponds to the

7

Variable name Description Default value
n Size of the square matrix. 100
m Maximum iterations allowed for

IPM.
500

e If ||xk+1 − xk||∞ ≤ e return xk+1. 0.005
e1 The shortest relative distance

where the program will consider
two points as distinct eigenvalues
in the first round.

0.1

e2 The shortest relative distance
where the program will consider
two points as distinct eigenvalues
in the second round in the first 5
intervals.

0.07

e3 Same as e2 but for the intervals
other than the first 5.

0.03

findn The number of eigenvalues the
program will find.

3

e4 If both cosine value larger than
this, consider as a distinct pair of
eigenvalue and eigenvector

0.01

scalers The relative distance discussed in
Section 3.1

[0.3,0.06]

repeat The number of searching process
in the second round of searching.

3

seed The seed in the random number
generator.

3

Table 2: The default values for runtest.m

8

left end or the right end.

In practice, there is another case for the missing eigenvalues. Sup-
pose there is an eigenvalue list returned by the first iteration which has
exactly one eigenvalue missing in some interval. Our intention for the
second round is to find the missing eigenvalue in that interval. When
our searching process arrives the interval corresponding to that eigen-
value, we try to pick up two points in that interval and perform IPM to
the two points with hope that they can converge to one point different
from those on the end of the interval. It can converge to one point dif-
ferent from the ends if we are lucky enough. However, for other cases,
after applying IPM, the points we choose converge to the end points on
the interval again.

One way to solve this problem is to add more points in the intervals
in the second searching process. In order to achieve this, we add the
variable scalers which enables tester deciding the distance those point
away from the end of the interval. As usual, we take the relative measure
for the variable scalers. The relative distance of p to the two ends λi, λj
can be calculated as

d = min

(
λi − p
λi − λj

,
p− λj
λi − λj

)
while λi > λj, and p ∈ (λi, λj). All the possible values of d is stored in the
variable scalers and it can be specified by the tester. By default the value
scalers is taken as [0.3,0.01].

Another problem arises for the angle test is that if IPM discover the
new eigenvalue corresponding to the new eigenvectors are not totally or-
thogonal. We encounter the cosine value between one of the end vector
as 0.3 sometimes. We can solve this is by changing the tolerance for angle
test e4 larger. We can enlarge the e4 to some value larger than 0.3. How-
ever, we choose to alter the eigenvalue list that the first searching round
returned. Suppose we have ten values returned by the first round, we
apply IPM again to the values in the list and we obtain a value list along
with a vector list which has exactly same number of elements. We up-
date the eigenvalue list by the new values IPM returned and keep the
vector list with the same order with the eigenvalue list. These two lists
are passed to the second round of searching.

9

3.2 Test for runtest.m

We test runtest.m by setting seeds with different values and test whether
runtest.m finds findn largest eigenvalues or not. We do this process in
MatLab for the optimal speed of execution. We have tested the seeds from
0 to 4,000 in MATLAB and there are 64 seeds (1.6%) which causes the pro-
gram failing to find the eigenvalues. There are two types of situations for
the method to fail - either repeated eigenvalues or missing eigenvalues.
The repeated eigenvalues are caused by the tolerance (threshold value
which we thought two values IPM found are different, either e1, e2 or
e3) is smaller than the actual distance between two adjacent eigenval-
ues. If the second round fails-all points we plugged in fail to converge
to the eigenvalues, the program will miss the eigenvalue. If the param-
eter repeat is too small (for example 1), the second round of searching
will not be done sufficiently, this will increase the chance for missing
eigenvalues. However, if we do the second round of searching too many
times, it will cause a longer elapse time. So the balance is needed for the
best performance. Table 2 shows the well-adjusted parameters for the
program.

3.3 Drawback
It is better to eliminate the variable repeat by implementing a mechanism
such that we stop doing it if the new eigenvalue is not found. Thus, we
do not need to manually adjust the variable repeat.

4 Conclusion
We start by describing IPM and implementing it in computer program.
Then, we move on to introduce the tests we have run on the Inverse
Power Method. The first test proves that the method can find the closest

eigenvalue to a given point but the method fails when
|µ− λ′2|
|µ− λ′1|

is close to

1. The second test proves that IPM can find the few largest eigenvalues
for real matrices generated by A = a′ ∗ a but fails for some cases.

There are some unsettled problems we encountered during this re-
search. For example, in the first test, is there any better solution for

the situation when
|µ− λ′2|
|µ− λ′1|

is close to 1 which usually arises for non-

symmetric matrices? In the second round of searching for the second

10

test, how can we ensure that the points we choose in the interval are
different from the eigenvalues on two ends of the interval? Is there any
better searching scheme which can avoid both the repeated eigenvalues
and the missing eigenvalues in the final eigenlist? We hope future re-
search could explore these questions. All code for this project can be
found at https://github.com/Eleven7825/IPM.

References
[1] Mersenne twister. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/

MT/emt.html. Accessed: 2020-10-26.

[2] Richard L Burden, J Douglas Faires, and Albert C Reynolds. Numer-
ical analysis, 2001.

11

https://github.com/Eleven7825/IPM
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Algorithm 1 Runtest.m

1: procedure SetUp(n, m, e, e1,e2,e3,seed,findn,repeat)
2: Generate random matrix A
3: λmin = IPM(A,0,x0,m,e)
4: λmax = PM(A,x0,m,e)
5: Create empty lists PList and eignList

6: Setting imax = log λmax, imin = log λmin, Stepsize = (imin − imax)/100
7: end procedure

8: procedure TheFistRound
9: while length(eigenlist) < findn AND eigen > λmin do

10: µ = 10log(µ)−StepSize

11: p = IPM(A, µ,x0,m,e)
12: Add p to pList

13: distaceList = |(distanceList− p)/p|
14: if any elements of distanceList > e1 then
15: Add to eigenList

16: end if
17: end while
18: eigenlist = IPM(eigenlist)
19: end procedure

20: procedure TheSecondRound
21: while The new eigenvalue is found in the iteration do
22: for interval=(left:right) between eigenList do
23: step = length of the interval

24: p1, · · · , pn = IPM(left- scalers*step,right+scalers*step)
25: if the interval corresponds to the first 5 eigenvalues then
26: TOL = e2*step
27: else
28: TOL = e3*step
29: end if
30: if any(pi-left)>TOL or Cosine value < e4 then
31: Append pi to eigenList

32: else if any(right-pi)>TOL or Cosine value < e4 then
33: Append pi to eignList

34: end if
35: Reorder the eigenList from the largest to smallest
36: Keep first findn elements of eigenlist while deletes others
37: end for
38: end while
39: end procedure

12

Script 1 IPM function in Octave/Matlab

1 function [eig_value ,eig_vector ,i] = IPM(A,mu,x0,m,e)

2 % initialize the method

3 x = x0;

4 B = A - mu*eye(size(A));

5 i = 0;

6 ERR = 1+e;

7 Xp = 0;

8

9 for j = 1: length(x)

10 if abs(x(j)) > Xp

11 Xp = x(j);

12 end

13 end

14 x = x/Xp;

15

16 while i < m && ERR > e

17 y = x/B;

18 for j = 1 : length(y)

19 Yp = 0;

20 if abs(y(j)) > Yp

21 Yp = y(j);

22 end

23 end

24

25 ERR = 0;

26 errvec = x - (y/Yp);

27 for j = 1: length(errvec)

28 if abs(errvec(j)) > ERR

29 ERR = abs(errvec(j));

30 end

31 end

32

33 x = y/Yp;

34 i = i+1;

35 end

36

37 if i < m

38 eig_value = 1/Yp+mu;

39 eig_vector = x;

40 return

41 else

42 disp(’max m exceeded!’)

43 return

44 end

45 end

13

	Inverse Power Method
	Tests on IPM
	Random number generators
	The first runtest
	The second runtest

	Improved searching scheme for the second round for the second test
	Measure the Cosine Values between the vectors
	Test for runtest.m
	Drawback

	Conclusion

