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1 Introduction

In this project, Backward Euler’s method and Forward Euler’s method have been implemented and compared
in the simulation of the spring system. Forward Euler’s method is easier to implement than Backward Eu-
ler’s method. However, when the stiffness of the spring becomes larger, the method breaks down. Although
the Backward Euler’s method is harder to implement, it provides ultra stability which can deal with stiffer
springs.

We made several assumptions regard to our spring:

• The spring system contains a set of springs. Each spring connects two nodes. A node can be connected
with multiple springs.

• The springs are weightless. However, there is weight on the nodes of the springs.

• The springs have non-zero rest length. This is important because the rest length will make the system
non-linear as we will see in Section 3.

∗The numerical method is introduced in Charles S. Peskin’s lecture note as provided in the Appendices A.
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• The spring is Hookean which means that the force on the spring is propositional to the difference
between the length of the spring and the original length of the spring.

2 Mathematical description

In this project, the spring system is consists of Hookean springs, i.e. the spring has no damping coefficients
and the force on the spring is only proportional to the difference between the length of the spring and the
rest length of the spring. Consider a spring connects a node j and node k, the force node j exerts on node
k is given by Equation 1.

Tjk(t) = Sjk(‖Xj(t)−Xk(t)‖ −R0
jk) (1)

where Sjk denotes the stiffness of the spring and Xj and Xk denote the location of the node j and node k
respectively. R0

jk is the rest length of the spring. A good observation is that Tjk is symmetric, i.e. Tjk = Tkj .
This is useful in the derivation of the numerical method.

Now define the direction vector rjk and r̂jk as

rjk = Xj −Xk

r̂jk =
Xj −Xk

‖Xj −Xk‖
.

(2)

Now, apply Newton’s second law to the node k :

Mk
dUk

dt
=

∑
j∈N(k)

Tjk(t)r̂jk(t) (3)

where N(k) denotes the neighboring nodes around node k. Mk is the mass of the node k.

Moreover, we have:

Uk =
dXk

dt
=
dX1

k

dt
ê1 +

dX2
k

dt
ê2 +

dX3
k

dt
ê3 (4)

3 Numerical Methods

Our first step is to discretize Equation 3,4. Equation 3 can be discretized as

Mk
Uk(t)−Uk(t−∆t)

∆t
=

∑
j∈N(k)

Tjk(t)r̂jk(t). (5)

Notice that on the right side of the Equation 5, we use the updated forces instead of
∑

j∈N(k) Tjk(t −
dt)r̂jk(t− dt) because here we want to implement the Backward Euler’s method.

Equation 4 can be discretized as

Uk(t) =
Xk(t)−Xk(t−∆t)

∆t
. (6)

Insert Equation 5 to Equation 6 we have:

Mk

∆t2
(Xk(t)− Zk(t)) =

∑
j∈N(k)

Tjk(t)r̂jk(t) =
∑

j∈N(k)

Sjk(‖Xj(t)−Xk(t)‖ −R0
jk)

Xj −Xk

‖Xj −Xk‖
(7)

As Zk(t) defined as:
Zk(t) = Xk(t−∆t) + Uk(t−∆t)∆t (8)
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Equation 7 is the main equation we want to solve. Zk(t) can be computed by the last time step. Thus,
the main task is to get Xk(t) for all nodes in the system. Thus, we have 3N equations with 3N unknowns
where N is the total number of the nodes. Notice that because the right-hand side of Equation 7 is non-linear
and this is the main challenge of solving it. A great simplification to Equation 7 is to set the rest length
R0

jk 0 and this make the equation linear. However, we will discuss the situation when R0
jk 6= 0 in this project.

3.1 Newton’s Method

We will use Newton’s Method to solve Equation 7. Newton’s method is an iterative method to solve non-
linear equations. The benefit of using Newton’s method is its rate of convergence is quadratic, so we should
be able to solve the equation in very few steps.

The following example uses Newton’s method to solve a quadratic equation, the idea is similar when it
comes to a larger system.

Suppose the equation we want to solve is

f(x) = 3x2 + 6x+ 1 = 0 (9)

The goal here is to construct a sequence x0, x1, · · · , xm, · · · that converges to the exact solutions. Let δxm−1
be the difference between xm and xm−1 :

xm = xm−1 + δxm−1 (10)

Writing out the Taylor expansion for f(xm) with respect to δxm−1 we have

f(xm) = f(xm−1 + δxm−1)

= f(xm−1) + f ′(xm−1)δxm−1 +O(δx2m−1)

= 3x2m + 6xm + 1 + 6xmδxm−1 + 6δxm−1 +O(δx2m−1)

(11)

Now we want the best δxm−1 to minimize f(xm). By setting 3x2m + 6xm + 1 + 6xmδxm−1 + 6δxm−1 = 0, we
have

δxm−1 =
−3x2m − 6xm − 1

6(xm + 1)
. (12)

In each step step, we only need to calculate δxm−1 by Equation 12, then plug it in and calculate the new
xm by Equation 10. In the same spirit, we are going to derive Newton’s method for the spring simulation.

For a system of equations, we are going to construct a sequence of X(m) such that it converges the
solution of Equation 7. Rewrite Equation 7, we define a new function g as:

g(X
(m)
k ) = Mk(X

(m)
k − Zk)−∆t2

∑
j∈N(k)

T
(m)
jk r̂

(m)
jk . (13)

Similar to Equation 11, we have:

g(X
(m)
k ) = g(X

(m−1)
k + δX

(m−1)
k )

= g(X
(m−1)
k ) + Jg(X

(m−1)
k )δX

(m−1)
k +O((δX

(m)
k )2)

(14)

where Jg(X
(m−1)
k ) denotes the Jacobian of g evaluated at X

(m−1)
k . Setting Equation 14 to 0:

g(X
(m−1)
k ) + Jg(X

(m−1)
k )δX

(m−1)
k = 0. (15)

From Equation 15, in order to calculate δX
(m−1)
k , we must calculate the Jacobian of g. Provided we know

Jg(X
(m−1)
k ), δX

(m−1)
k can be solved with a linear solver.
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The meaning of Jg(X
(m−1)
k )δX

(m)
k is that given a little perturbation in the direction δX

(m−1)
k at X

(m−1)
k

how much g changes. Denote Jg(X
(m−1)
k )δX

(m−1)
k by δg(X

(m−1)
k ). Apply δ on the both side of Equation 13,

we have:
δg(X

(m)
k ) = MkδX

(m)
k −∆t2

∑
j∈N(k)

δ(T
(m)
jk r̂

(m)
jk ). (16)

Thus, next step is to calculate δ(T
(m)
jk r̂

(m)
jk ).

δ(T
(m)
jk r̂

(m)
jk ) = r̂

(m)
jk δT

(m)
jk + T

(m)
jk δr̂

(m)
jk . (17)

Next, we will derive δT
(m)
jk and δr̂

(m)
jk .

δr̂jk = δ

(
rjk
‖rjk‖

)
=

δrjk
‖rjk‖

− rjk
‖rjk‖2

δ‖rjk‖

=
δrjk
‖rjk‖

− rjk
‖rjk‖2

rjk
‖rjk‖

· δrjk

=
δrjk
‖rjk‖

(
I3 − r̂jkr̂

T
jk

)
(18)

Define r̂jkr̂
T
jk as Pjk. Thus, δr̂jk =

δrjk
‖rjk‖

(I3 + Pjk) .

Next, calculate δTjk.

δTjk = Sjkδ(‖rjk‖ −R0
jk)

= Sjk
rjk
‖rjk‖

· δrjk.
(19)

Going back to Equation 17, we have:

δ(T
(m)
jk r̂

(m)
jk ) = SjkP

(m)
jk δr

(m)
jk + T

(m)
jk

δr
(m)
jk

‖r(m)
jk ‖

(
I3 −P

(m)
jk

)

= δr
(m)
jk (SjkP

(m)
jk +

T
(m)
jk

‖r(m)
jk ‖

(
I3 −P

(m)
jk

)
)

(20)

Plugging back to Equation 16, we have:

δg(X
(m−1)
k ) = MkδX

(m−1)
k −∆t2

∑
j∈N(k)

δr
(m−1)
jk (SjkP

(m−1)
jk +

T
(m−1)
jk

‖r(m−1)jk ‖

(
I3 −P

(m−1)
jk

)
) (21)

Plugging Equation 21 back to Equation 15, we have:

Mk(X
(m−1)
k −Zk)−∆t2

∑
j∈N(k)

T
(m−1)
jk r̂

(m−1)
jk +MkδX

(m−1)
k −∆t2

∑
j∈N(k)

δr
(m−1)
jk (SjkP

(m−1)
jk +

T
(m−1)
jk

‖r(m−1)jk ‖

(
I3 −P

(m−1)
jk

)
) = 0

(22)

Notice that Equation 22 is of form AδX̃(m−1) = B. A is a 3N by 3N matrix, B is a 3N column vector,
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and δX̃(m−1) is simply rewrite δX(m−1) into a 3N column vector. Plugging into Equation 22, we have:

Bk = −Mk(X
(m−1)
k − Zk) + ∆t2

∑
j∈N(k)

T
(m−1)
jk r̂

(m−1)
jk

Aj,k = Ak,j = ∆t2
∑

j∈N(k)

(SjkP
(m−1)
jk +

T
(m−1)
jk

‖r(m−1)jk ‖

(
I3 −P

(m−1)
jk

)
) k 6= j

Ak,k = −
∑
j

Aj,k +MkI3

(23)

Thus, the Newton’s method begins by calculating Zk, then calculatesA and B to get δX(m−1). Finally, we
the result by X(m) = X(m−1) + δX(m−1).

4 Computer Program and validation

4.1 Computer program

In the Matlab program, the location of nodes X(t) is stored in a N by 3 matrices with each row representing
the x,y,z coordinate of the node. The code below shows the main loop for the backward simulation:

1 while t<Tfinal

2 t = t + dt;

3 Xold = X;

4 Z = X+dt*U;

5

6 for repeat = 1: repeats

7 A = createA(X,R0,S,M3,jj ,kk,dt);

8 B = createB(X,R0,S,M3,jj ,kk,dt,Z);

9 dX = A\B;

10 X = X+reshape(dX ,3 ,[]) ’;

11 end

12

13 % calculate U

14 U = (X - Xold)./dt;

15 locs = [locs , X(1,1)];

16 end

The matrix A is create createA.m function:

1 function A = createA(X,R0,S,M3,jj ,kk,dt)

2 DX = X(jj ,:) - X(kk ,:);

3 R = sqrt(sum(DX.^2,2));

4 DXN = DX./[R,R,R];

5 T = S.*(R-R0);

6 TR = T./R;

7

8 A = diag(M3);

9

10 for l = 1: length(jj)

11 P = (DXN(l,:)) ’*DXN(l,:);

12 AA = -(dt^2)*(S(l)*P+TR(l)*(eye(3)-P));

13 j = (3*jj(l) -2):(3*jj(l));

14 k = (3*kk(l) -2):(3*kk(l));

15 A(j,k) = AA;

16 A(k,j) = AA;

17 A(j,j) = A(j,j) - AA;

18 A(k,k) = A(k,k) - AA;

19 end

20 end

The matrix B is create with createB.m function:

1 function B = create_B(X,R0,S,M3,jj ,kk,dt,Z)

2 DX = X(jj ,:) - X(kk ,:);
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3 R = sqrt(sum(DX.^2,2));

4 DXN = DX./[R,R,R];

5 T = S.*(R-R0);

6

7 B = -M3.*( reshape(X’,[],1)-reshape(Z’,[],1));

8

9 for l = 1: length(jj)

10 k = (3*kk(l) -2):(3*kk(l));

11 j = (3*jj(l) -2):(3*jj(l));

12 B(k) = B(k)+(dt^2)*T(l)*DXN(l,:) ’;

13 B(j) = B(j)-(dt^2)*T(l)*DXN(l,:) ’;

14 end

15 end

4.2 Validation

There are several checks that can validate our implementation. The first check is about Euler’s method in
general. Euler’s method has the first order of convergence meaning that to eliminate the error 10 times
smaller, one needs to make the time step 10 times smaller. Thus, it is useful to plot the relationship between
the time step and the error. Here we are using the x coordinate of the first node as our reference, i.e. X(1,1).
To get the value of the error, we need to get the accurate value of X(1,1). The idea here is to use a much
smaller time step as our reference accurate value, and compare this value to the value we get using a much
larger time step.

In the test, the test problem is shown in Figure 1. N equally weighted nodes were connected with springs
with the same stiffness. The whole system is released with zero velocity at time zero. After simulating the
system for 0.2 seconds, record the location of the first node. Then compare this value to the reference values.
Doing this with dt from 1e-4 to 1e-1 and choose the standard value to be the result we get from 1e-6, we
get Figure 2.
The second test is to check the Newton’s method is working. The convergence of the Newton’s method is

-1

-0.5

0

0.5

1

-0.5

0

0.5

-1

-0.5

0

0.5

1

Figure 1: The test problem

quadratic. Looking at the digits of X(1,1), suppose it gives us a corrects digits in the first iteration, it will
give us 2a correct digits in the second iteration. Thus, by simply looking at X(1,1), we will be able to check
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the Newton’s method. Here is the value of X(1,1) in the Newton’s iteration:

10
-4

10
-3

10
-2

10
-1

dt

10
-6

10
-5

10
-4

10
-3

10
-2

e
rr

o
r

Figure 2: The relationship between the time step and the error

K>> x(1)

ans = 1.446037889959311

K>> x(1)

ans = 1.446043151276038

K>> x(1)

ans = 1.446043151275209

K>> x(1)

ans = 1.446043151275209

K>>

As we can see from the run above, the first iteration gives us 4 correct digits, the second one gives us 7
(almost eight) correct digits which agrees with the convergence of the Newton’s method.

The final test is to check that we indeed solve the Equation 7 in each time step. The way to check it
is to check whether two sides of Equation 7 are equal after we just finish Newton’s method iterations. One
notice is that how the right-hand side of Equation 7 agrees with the left-hand side of Equation 7 depends
on how small dt we choose. Usually, the difference of entry on both sides hit below the machine precision,
i.e. 1e-16.

5 Results

The purpose of this project is to demonstrate the stability of Backward Euler’s over the Forward Euler’s
method. We want to find a case where we use the same parameters for Forward and Backward Euler’s
method, the Forward version does not converge while the Backward version gives us the correct result.
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By performing experiments on the test problem, the Forward Euler’s method gives a more accurate result
on the test problems by imposing the time steps on both methods are the same.
Figure 3 plots X(1,1) with the test problem. Under the same time step, the accuracy of Backward Euler’s

0 5 10 15 20 25 30 35 40 45

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

dt = 1e-3 Forward

dt = 1e-2 Forward

dt = 1e-3 Backward

dt = 1e-2 Backward

(a) Backward Forward comparison with different dt

39.6 39.7 39.8 39.9 40 40.1 40.2 40.3
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0.525

0.53

dt = 1e-3 Forward

dt = 1e-2 Forward

dt = 1e-3 Backward

dt = 1e-2 Backward

(b) Zoomed around t = 40s

Figure 3: Backward and Forward Euler’s method working on the test problem

method is lower than that of Forward Euler’s method.

Although the Backward Euler’s method has a lower accuracy on the test problem, it is a more stable
solver when it comes to the stiffer springs. A gyroscope is created as shown in Figure 4. At the time 0, the

Figure 4: The gyroscope we created

gyroscope was given a initial angular velocity. There is no external forces applied to the gyroscope. Using
dt = 1e-4 and s = 1e8 on the gyroscope, the Backward Euler’s method is still working but the gyroscope
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Figure 5: with dt = 1e-4 and s = 1e8, the Forward Euler’s method fails

split apart using Forward Euler’s method as shown in Figure 5.

To conclude, the Forward Euler’s method has advantage in the accuracy of solution while the Backward
Euler’s method can deal with stiffer springs.

6 Conclusion

As a summary. This project mainly focuses on the implementation of the Backward Euler’s method. We
build up the numerical method step by step in Section 3. In the result Section, we show the stability of
the Backward Euler’s method against the Forward Euler’s method. Although the Backward Euler’s method
handles better on a stiffer spring systems, it generates a less accurate result compared to the Forward version.

9



Appendices

A Charles S. Peskin’s lecture note

https://www.math.nyu.edu/~peskin/modsim_lecture_notes/backward_euler.pdf

B Runnable programs

https://github.com/Eleven7825/Backward-Euler-Spring

C Backward simulation generated by program

https://youtu.be/Oas0sl2yQqY
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