
An Overview on Linear Solvers

Shiyi Chen
Tutor: Leonardo T. Rolla

January 6, 2021

Abstract

The Conjugate Gradient Method (CG) is a prevalent method for
solving linear systems. In this report, we include a self-contained
description of CG and Steepest Descent (SD) without introducing
Krylov space. We also describe the preconditioning and its appli-
cation on CG (PCG). We then compare SD, CG, PCG by considering
their iterations. We find that due to roundoff error, the iteration
number can go beyond the theoretical upper bound for SD. Finally,
we compare those gradient methods with PLU factorization. The re-
sulting linear solver is given in the conclusion part.

Contents
1 Gradient Methods 2

1.1 Steepest Descent Method 3
1.2 Conjugate Gradient Method 5
1.3 Condition number . 10
1.4 Conditioning . 11

2 Convergence 12
2.1 Relative error measurement 13
2.2 Flops at each iteration . 14
2.3 Number of iteration comparison - SD and CG 14
2.4 Number of iteration comparison - CG and PCG 17
2.5 The density for which PCG and CG takes the same amounts

of iteration . 19

3 Comparison between PLU and Gradient Methods 19

©2020 Leonardo T. Rolla, Shiyi Chen

1

https://creativecommons.org/licenses/by-sa/3.0/deed.en

4 Conclusion 20

1 Gradient Methods
Gradient Method is an approach to iteratively minimize or maximize the
object function. In this report, we use these methods to solve linear
equation Ax = b, while A is a symmetric positive definite matrix. Be-
sides iterative methods, PLU factorization can also be applied in solving
the linear systems. In this section, we describe several iterative meth-
ods, we will compare the PLU factorization for the linear equation solving.

The simplest Gradient Method is Steepest Descent Method which could
be traced back to Cauchy in 1847 [5]. In the 20th century, the Con-
jugate Gradient Method was gradually developed and built on Steepest
Descent [4]. Preconditioned Conjugate Gradient Method is a variation of
the Conjugate Gradient Method by applying preconditioner in each iter-
ation. In this section, we give a basic yet self-contained introduction on
these methods by its application on solving Ax = b.

Define the quadratic form as following:

f(x) =
1

2
xTAx− bTx+ c, (1)

where A is a symmetric positive definite matrix and x is a vector. After
differentiating f(x),

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2...
∂f(x)
∂xn

 =
1

2
ATx+

1

2
Ax− b = Ax− b. (2)

SinceA is symmetric positive definite, the global minimum of the quadratic
form is achieved when∇f(x) = 0. Thus, x satisfying Ax = b also minimizes
f(x).

Since solving Ax = b is equivalent to minimizing Equation (1), we can
seek methods which can help us minimize the quadratic form. SD and
CG can help us do that.

2

1.1 Steepest Descent Method
The method starts by choosing vector x0. In each iteration, we define dk
as searching direction, αk as the step size. Thus, we have

xk+1 = xk + αkdk. (3)

We define x̂ such that
Ax̂ = b. (4)

The principles about Steepest Descent(SD) are:

1) It chooses the searching direction dk such that f(xk) decreases the
fastest.

2) It chooses the step size αk such that f(xk+1) is minimized in the direc-
tion of dk.

Our purpose for the next step is to find αk and dk.

For the searching direction dk, we know that the direction ∇f(xk) gives
us fastest ascent on point xk. Letting

dk = −∇f(xk) (5)

gives us the desired direction, we define residual at k-th step - rk as

rk = b− Axk. (6)

As a result of Equation (2), Equation (5) and Equation (6), we have

rk = −∇f(xk) = b− Axk and dk = rk. (7)

The next step is finding step size αk in each step. We want the partial
derivative on the searching line dk for xk+1 to be 0, thus f(xk+1) can be
minimized, i.e.,

∂f(xk)

∂αk

= dk · ∇f(xk+1) = 0 (8)

By Equation (7), Equation (8) can be written as

− dk · rk+1 = 0, (9)

rk · rk+1 = 0. (10)

3

By Equation (6) and Equation (9),

−dk · (b− Axk+1) = 0.

By Equation (3) and the definition of rk as shown in Equation (6),

−dk · (b− A(xk + αkdk)) = 0,

−dk · (rk − αkdk) = 0,

αk =
dk · rk
dk · Adk

. (11)

Using Equation (7) again,
αk =

rk · rk
rk · Ark

. (12)

We have both αk and dk in each iteration now. Moreover, Equation (10)
shows that the two adjacent searching directions are orthogonal to each
other. Additionally, we have

rk+1 = b− Axk+1 = b− A(xk + αkdk) = rk − αkAdk. (13)
We will discuss later how we calculate residual rk in each step, i.e.,

whether to choose Equation (13) or Equation (6). To sum up, in each
iteration of SD we need:

1)calculate the direction rk by Equation (6),
2)calculate αk by Equation (12),
3)let xk+1 = xk + αkrk.

Script 1 presents how we do SD programming in Matlab/Octave. The
function takes a symmetric positive definite matrix A, target vector b,
initial vector x0, allowed error e, and allowed maximum iterations m as
input. Iteration number i and the result vector x as output. We calculate
the error by Equation (14):

error =
||b− Axk||
||b||

=
||rk||
||b||

. (14)

In the initial step, we let r = norm(b)+e because we want the statement
norm(r)/norm(b)>e to be true in the first iteration.

Figure 1 is a visualization of the Gradient Descent Method, the con-
tour map represents the value of the function

f(x) =
1

2
x · Ax− b · x

4

Script 1 A function for SD

1 function [x,i] = SD(A,b,x0,e,m)

2 i = 0; x = x0; r = norm(b)+e;

3 while i < m && norm(r)/norm(b)>e

4 r = b - A * x;

5 alpha = r’ * r / (r’ * A * r);

6 x = x + alpha * r;

7 i = i + 1;

8 end

9 end

while x =

(
x1
x2

)
. We choose x0 =

(
−12.3
1.25

)
, A =

(
3 2
2 6

)
, b =

(
2
−8

)
,m =

100, e = 0.01. After 13 iterations, SD finds the minimum value of f(x),
and the error is less than 0.01. Figure 1 shows that adjacent searching
directions are orthogonal, which corresponds to Equation (10).

-12 -10 -8 -6 -4 -2 2 4 6 8

x
1

-4

-2

2

4

x
2

Figure 1: SD on 2D plane.

1.2 Conjugate Gradient Method
The Steepest Descent Method is the easiest gradient method but the least
efficient one based on iterations. Figure 1 shows that SD goes in two di-
rections on the 2d plane many times which takes quite a lot of iterations
in each direction; we may consider a method going through one direction

5

in each step and never step back the same direction again, thus it may
only take 2 iterations on the 2d plane. Conjugate Gradient Method, in
theory - without considering the roundoff error, can manage that.

In the rest of the report, we will consider linear operators from Rn to
Rn. Suppose the searching directions d0, d1, · · · , dn−1 make up a basis of
Rn and satisfy

dj · Adi = 0 if i 6= j and i, j < n. (15)
If two vectors dj and di satisfy Equation (15), we call them A-orthogonal
to each other or conjugate. In the rest of report, we denote the error in
k-th step as

ek = x̂− xk,
while x̂ is defined in Equation (4). Thus, the initial error e0 can be
uniquely expressed as:

e0 = x̂− x0 =
n−1∑
k=0

αkdk. (16)

Suppose we have already made j steps, we can write ej as

ej = x̂− xj
= x̂− x0 − (xj − x0)

= e0 −
j−1∑
r=0

αrdr

=
n−1∑
r=0

αrdr −
j−1∑
r=0

αrdr.

(17)

After n iterations,

en =
n−1∑
r=0

αrdr −
n−1∑
r=0

αrdr = 0. (18)

Equation (18) tells us the method stops exactly at n-th step. In practice,
if n is large, the number of iterations is more than n due to the roundoff
error, we will discuss the roundoff error problem in Section 2.
For j < n, we have,

ej =
n−1∑
r=0

αrdr −
j−1∑
r=0

αrdr =
n−1∑
k=j

αkdk, (19)

6

where dk should be conjugate to any other searching directions. Since
ek+1 is a linear combination of dj ’s. For j > k, by Equation (19),

dk · Aek+1 = 0,

By Equation (17),

dk · A(x̂− xk+1) = 0,

dk · A(x̂− xk − αkdk) = 0

dk · A(ek − αkdk) = 0 (20)

Moreover, by Equation (4) and Equation (17),

ri = b− Axi
= A(x̂− xi)
= Aej.

(21)

Plug Equation (21) into Equation (20),

αk =
dk · rk
dk · Adk

. (22)

Equation (22) tells that αk in CG is the same as that in SD (11). Just like
SD, f(xj) is minimized in CG in the step j since Equation (8) holds, and
the searching direction is orthogonal to the gradient of the next point,
since Equation (10) holds.

Equation (19) can be viewed as, in k-th iteration, ek is eliminated in
direction dk−1. This process continues until en finally equals to the zero
vector.

We already know the expression for αk in each step, to complete the al-
gorithm, our next goal is to produce a set of d1, d2, . . . which are Conjugate
to each other. We use Conjugate Gram Schmidt Process [4] to produce a
set of conjugate vectors. Different from the normal Gram Schmidt, Con-
jugate Gram Schmidt produces a set of conjugate vectors instead of or-
thogonal vectors. The processes for these two versions of Gram Schmidt
resemble, they both generate n Conjugate/Orthogonal vectors from n lin-
early independent vectors. And the j-th vector comes from v1, v2, . . . , vj−1.
As a result, span(u1, u2, . . . , uj) = span(d1, d2, . . . , dj).

7

CG takes r1, r2, . . . as input vectors. In the i-th step,

di = ri +
i−1∑
k=0

βikdk. (23)

Multiply dTj A on both sides, we have

di · Adj = dj · Ari +
i−1∑
k=0

βikdj · Adk (24)

Since dj · Adk = 0 for all k other than k = j, we have,

di · Adj = dj · Ari + βijdj · Adj (25)

βij = − ri · Adj
dj · Adj

. (26)

For the next step, we are going to simplify the expression for βij.

The nice property for us to choose r1, r2, · · · as our input vector is that
we will find βij = 0 for all j < i − 1, as we will show this nice property
subsequently.

Multiply dTi A (j < i) on both side of Equation (19), by Equation (21),

di · rj = di · Aej =
n−1∑
k=j

αkdi · dk = 0 for all j < i. (27)

Thus, rj is orthogonal to span(d1, d2, · · · , dj−1). Since d1, d2, · · · , dj−1 is gen-
erated by r1, r2, · · · , rj−1, by Conjugate Gram Schmidt Process, we have
span(d1, d2, · · · , dj−1) = span(r1, r2, · · · , rj−1). Thus, rj is also orthogonal to
span(r1, r2, · · · , rj−1), we have,

rj · ri = 0 for all j < i. (28)

Taking dot product ri with Equation (13), we have,

ri · rj+1 = ri · rj − αjri · Adj.

For j < i− 1,

ri · Adj =
ri · rj − ri · rj+1

αj

= 0,

βij = − ri · Adj
dj · Adj

= 0. (29)

8

Script 2 A function for CG.

1 function [x,i] = CG(A,b,x0,e,m,recal)

2 r = b - A*x0;

3 d = r; x = x0; i = 0;

4 while i<m && norm(r)/norm(b)>e

5 q = r’*r; Ad = A*d; d_A_product= d’*Ad;

6 alpha = q/d_A_product;

7 x = x + alpha*d;

8 if mod(i,recal) == 0; r = b-A*x;

9 else; r = r - alpha*Ad;

10 end

11 d = r + (r’*r/q)*d;

12 i = i + 1;

13 end

14 end

For j = i− 1,

βi,i−1 = −ri · Adi−1

dj · Adj
=

ri · ri
di−1 · Adi−1

1

αi−1

=
ri · ri

di−1 · ri−1

. (30)

Taking ri dot product with Equation (23),

di · ri = ri · ri +
i−1∑
k=0

βikdk = ri · ri. (31)

Since all βij = 0 except βi,i−1 by Equation (29), we denote βi,i−1 by βi in rest
of the report. By (31), Equation (30) can be rewrite as

βi = βi,i−1 =
ri · ri

di−1 · ri−1

=
ri · ri

ri−1 · ri−1

. (32)

By Equation (30) and Equation (32), we can write the Conjugate Gram
Schmidt Process in Equation (23) as

di = ri + βidi. (33)

As we have already shown how we construct searching directions dk and
the step size αk, we can give a complete algorithm for CG as shown in
Script 2. We calculate rk by Equation (21) every recal iterations. We
will explain the reason why we calculate rk with two different formulas
in Section 2.3. Using exactly the same A, b, x0,m, e in the Section 1.1 and
set recal=50, we get Figure 2.

Compared to Figure 1, CG takes exactly two steps to find the optimal
point on the 2d plane, and the two directions are Conjugate to each other.

9

-12 -10 -8 -6 -4 -2 2 4 6 8

x
1

-4

-2

2

4

x
2

Figure 2: CG on 2d plane.

1.3 Condition number
The condition number is an index to quantify the degree of conditioning.
An ill-conditioned matrix has a big condition number.

Mathematically, condition number κ describes the worst case of input
that can change with a certain amount of output change. Suppose the
linear system is Ax = b and when we add perturbation p [3] on the right
hand side, the system becomes

Ax̄ = b+ p. (34)

Defining the relative changes on the right hand side, the left hand side
can be written as

eb = ||p||/||b|| and ex = ||x− x̄||/||x||. (35)

Thus, the change can be expressed as

ex/eb =
||x̄− x||
||x||

||b||
||p||

. (36)

We define the norm of a matrix as

||A|| = max(||Ae||) while ||e|| = 1. (37)

10

The following inequality follows from the definition

||b|| = ||Ax|| = ||x|| · ||Ae|| ≤ ||A|| · ||x||.

Thus,

ex/eb =
||x̄− x||
||x||

||b||
||p||

=
||A−1p||
||x||

||b||
||p||

≤ ||A
−1|| · ||p||
||x||

||b||
||p||
≤ ||A−1|| · ||b|| · ||A||

||b||
= ||A−1|| · ||A||
= max(λi(A)) ·max(λi(A

−1)) (for symmetric random matrices)

=
max(λi(A))

min(λi(A))
.

Since xx/xb is bounded by
max(λi(A))

min(λi(A))
, we let the upper bound be the

condition number, i.e.,
κ(A) =

max(λi(A))

min(λi(A))
. (38)

In Matlab/Octave, in-built cond function will give us the condition
number of the matrix.

1.4 Conditioning
CG is fast and easy to implement and it should converge at exactly n
steps by Equation (18). However, in practice, different matrices with the
same size may take a different number of iterations. Some matrices may
be hard for CG to deal with, we call this kind of matrices ill-conditioned.

We will encounter the situation when A is ill-conditioned sometimes,
i.e., κ(A) is large. Under this situation, CG converges slowly. Precondi-
tioning is a strategy to make the condition number of the linear system
smaller. We do preconditioning by pre-multiplying M−1 on both sides of
the equation Ax = b, the symmetric positive definite matrix M is called
preconditioner, and we can write the matrix M−1 as LLT .

Thus, solving Ax = b is equivalent to solve (LTAL)(L−1x) = (LT b). Let
Â = LTAL, x̂ = L−1x, b̂ = LT b, Ax = b becomes

Âx̂ = b̂. (39)

11

We do CG on Equation (39), we have following equivalence:

r̂n = LT rn d̂n = L−1dn. (40)

It will be nice if we can get rid of LT , L−1 in our iterations.
By Equation (13), we have

r̂n = LT rn = r̂n−1 − α̂nÂd̂n−1

= LT rn−1 − α̂n(LTAL)L−1dn−1

= LT (rn−1 − α̂nAdn−1).

Hence,

rn = rn−1 − α̂nAdn−1. (41)

Similarly, Let sn = M−1rn, we have

α̂n =
rTn−1sn−1

dTn−1Adn−1

,

dn = sn + β̂ndn−1,

β̂n =
rTn sn

rTn−1sn−1

.

Compared to CG, in PCG, we need to calculate M−1rn in each iteration.
It is important to choose our preconditioner M. If we choose M = I, the
PCG process will be identical to CG. If we choose M = A, we need to solve
Arn+1 = rn in each iteration which does not simplify the process at all.

There are many ways to choose M, here, we choose M to be the di-
agonal of the A, this conditioner is called Jacobi preconditioner [4]. It is
important to notice that the diagonal entries of A cannot be zero for the
Jacobi preconditioner. In the rest of the report, whenever we mention
PCG method, we mean PCG by Jacobi preconditioner.

2 Convergence
The convergence is determined by the condition number of A, the choice
of x0 and b. Theoretically, the number of iteration equals the size of the
matrix A. However, due to the roundoff error, when the condition number
is big, it usually takes more than n. Shewchuk show us the error term in

12

the i-th iteration in SD can be bounded by (
κ− 1

κ+ 1
)i||e0||A in Chapter 6.2[4].

Thus,
ei · ri = ei · Aei = ||ei||A ≤ (

κ− 1

κ+ 1
)i||e0||A. (42)

Similar conclusion can be drawn from CG as he show us in his Chap-
ter 9.2,

ei · ri = ei · Aei = ||ei||A ≤ (

√
κ− 1√
κ+ 1

)i||e0||A. (43)

We find that by substitute ei to ri in the left hand side of Inequality (42)
and Inequality (43), his conclusion still holds, i.e.

ri · ri = ||ri|| ≤ (
κ− 1

κ+ 1
)i||r0||,

ri · ri = ||ri|| ≤ (

√
κ− 1√
κ+ 1

)i||r0||.
(44)

We will numerically see these two inequalities immediately.

2.1 Relative error measurement
We use two ways to measure errors in each iteration. We used to take
the same relative error measurement as Shewchuk, i.e.,

ẽi =
||ri||
||r0||

(45)

This measurement has no problem for small linear systems. However, it
gives inaccuracies in our runtest on big matrices. Here is how we gener-
ate our matrices: we generate a symmetric semi-positive definite matrix
by firstly generate a random matrix using a=randi(n,n) command in Mat-
lab/Octave, then we let A = a’*a (A = aTa). When we increase the size
n, the magnitude of the entries in A increases accordingly. We gener-
ate x0 by letting x0 = rand(n,1), also generate b by letting b = rand(n,1).
Since the magnitude of entries in A is much larger than that in x0 and b,
the norm of Ax0 will be large. Thus, in Equation (45), the denominator
||b−Ax0|| = ||r0|| is large. For a given ẽ, allowed ||ri|| will also be large, this
gives us inaccurate result.

The solution is changing our error measure to be:

ẽi =
||ri||
||b||

. (46)

13

Method Flops of each iteration
SD 4n2 + 7n+ 2
CG 4n2 + 11n+ 3

PCG 4n2 + 12n+ 3

Table 1: Flops at each iteration.

The allowed ||ri|| will be much smaller than that in Equation (45). We will
use Equation (46) to measure the relative error in the rest of the report.

2.2 Flops at each iteration
We compare the flops for SD, PCG and CG for each iteration in this sec-
tion. Suppose the size of the matrix is n, consider SD is done in Script 1,
CG done in Script 2 and PCG is done with Jacobi preconditioner. We will
use Equation (6) to calculate rk in each iteration for SD, CG, PCG. Table 1
is the result.

From Table 1, SD, CG and PCG all have the same leading term at each
iteration. When counting the total flops, the number of iteration matters
more than the flops of each iteration.

2.3 Number of iteration comparison - SD and CG
We compare the number of iteration for CG and SD working on matrices
generated by method described in Section 2.1 in script runtest.m. In this
script, we generate matrices with sizes from 2^strt to 2^stop, then do CG
and SD to them separately. For each of the matrices, we calculate the
condition number of the matrices using the in-built cond function. If one
of the iterations exceeds the maximum number of iteration m, CG or SD
fails and we drop that data from our sample. We do this process repeat-
edly. Users can change all the variables in the workspace including the
repeat rounds repeat - maximum iteration rounds allowed as described
in a variable called m. For the output, the program generates a plot about
condition numbers vs iterations, a plot about size of the matrix vs itera-
tions (see Figure 5 for example), a TXT report containing the description
about the test and all the data in the test. In the meanwhile, there are
messages about the execution process appearing on the terminal.

14

102 104 106 108 1010

Condition numbers

100

101

102

103

104

105

106

it
e

ra
ti
o

n
 r

o
u

n
d

s
Rounds for iteration until error is less than 0.010000

Steepest Descent

Conjugate Gradient

Figure 3: Result by runtest.m.

By setting m = 4000000, strt = 1, stop = 7, e = 0.01, repeat = 1200,
running few hours on Matlab, we get Figure 3. The purple and orange
lines are theoretical boundaries deducing from Equation (44) for CG and
SD respectively. For the CG in red dots, each cluster belongs to one ma-
trix size. We use Equation (13) to calculate the residual for both SD and
CG to minimize the roundoff error in each iteration. We have most of
the points below the theoretical boundary with few of them above the
boundary of SD, two hypotheses are:

1)The measure for relative error is different i.e. when we are doing SD,
we measure relative error using Equation (46) while we get the theoretical
boundary measuring error by Equation (45).

2)Those points out of SD boundary are big matrices. Since the magni-
tude of entries in big matrices are with larger magnitude, roundoff errors
will be more significant than small matrices with smaller entries.

As for hypothesis 1, we cannot generate matrices along the boundary
for CG using the Equation (45), thus we have not verified this hypothesis
yet.

Hypothesis 2 can be easily verified, we only need to keep track of the
size of those matrices which go beyond the SD theoretical boundary. We
change the variables to be m = 4000000, strt = 3, stop = 6, e = 0.01,

repeat = 120. Ideally, there should be 120 · 4 = 480 points, however, 71
of them reach the maximum iterations m, we do not count them into

15

size of the matrix number of iteration median iteration
64 708,530 1,042,116

398,180
300,630
288,817
236,148
217,764
97,124

32 52,428 192,995
44,013
24,735

16 4,540 35,482
1,760

Table 2: Information for 12 points that go beyond the boundary.

the sample points. In the 409 sample points, 12 of them go beyond the
boundary (2.93%). Table 2 gives detailed information about those 12
points. From the table, matrices with larger sizes are more likely to go
beyond the boundary. Also, those matrices above boundary have smaller
numbers of iteration compared to the median number of iteration with
the same size. This aligns our second hypothesis - with fixed condition
number, bigger matrices (with big entries) are more likely to go beyond
the boundary.

Another thing we find is that when we change the residual formula
to Equation (13), the number of points that go beyond the boundary in-
creases significantly. Equation (13) takes fewer flops than Equation (6)
in each iteration but Equation (13) is less accurate since no feedback is
given from b, the roundoff error accumulates in each iteration. Thus, it
requires more iterations to converge. When we use Equation (6) to calcu-
late rk in every iterations, using the same parameters discussed above,
59.35% of points go beyond the boundary as Figure 4(b) shown.

As a conclusion for this section, we know that hypothesis 2 is true. As
for hypothesis 1, we suggest future research to investigate in by chang-
ing the way of generating the matrices, i.e. push the points around the
boundary while keep varieties of condition numbers. For next stage of
research, we would choose CG as our linear equation solver because it
takes less iterations than SD. Also, we need to try to strike the balance
between the flops and iteration rounds by choosing residual formula al-

16

100 102 104 106 108 1010

Condition numbers

100

102

104

106

108

it
e

ra
ti
o

n
 r

o
u

n
d

s

Rounds for iteration until error is less than 0.010000

Steepest Descent

Conjugate Gradient

(a) Residual by Equation (6)

100 102 104 106 108 1010

Condition numbers

100

102

104

106

108

it
e

ra
ti
o

n
 r

o
u

n
d

s

Rounds for iteration until error is less than 0.010000

Steepest Descent

Conjugate Gradient

(b) Residual by Equation (13)

Figure 4: Iterations using different residual formulas.

ternatively as we had already implemented in our algorithm of CG in
Script 2.

2.4 Number of iteration comparison - CG and PCG
In this section, we compare the numbers of iteration for CG and PCG
by considering two main situations - the matrices are dense and the
matrices are sparse. We generate a random symmetric dense matrix
first by letting A = a’*a, a = rand(n,n). For a sparse matrix, we take the
diagonal of the dense matrix we just generated, then adding elements
off-diagonal randomly until the density of the matrix is fulfilled. We set
density =

2

n
at first.

Similar to runtest.m, we generate a series of matrices with sizes are
multiples of two (either sparse or dense), run CG and PCG for them sep-
arately for the rounds executed until the methods converge.

As shown by Figure 5, for the dense matrices, iterations of CG and
PCG are almost the same, with CG taking fewer flops. However, PCG
takes fewer flops for the sparse matrices.

For the flops in each iteration, PCG takes more flops as shown in Ta-
ble 1. Since M−1 is a diagonal matrix, it only takes 2n flops for that step,
which is not the leading term as shown in Section 3.

To sum up, the result suggests us to use CG for dense matrix while
PCG for sparse matrices, but we do not know which density shall we

17

102 104 106 108 1010 1012 1014

Condition numbers

101

102

103

it
e

ra
ti
o

n
 r

o
u

n
d

s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

101 102 103

size of the matrix

101

102

103

it
e
ra

ti
o
n
 r

o
u
n
d
s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

100 101 102 103 104 105

Condition numbers

100

101

102

103

it
e
ra

ti
o
n
 r

o
u
n
d
s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

101 102 103

size of the matrix

100

101

102

103

it
e
ra

ti
o
n
 r

o
u
n
d
s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

Figure 5: Graphs in the first row are about dense matrices, the second row describes the sparse matrices,
the first column is about condition number vs iteration rounds, the second column is about the size of the
matrices vs iteration rounds.

18

102 104 106 108

Condition numbers

101

102

103
it
e
ra

ti
o
n
 r

o
u
n
d
s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

101 102 103

size of the matrix

101

102

103

it
e
ra

ti
o
n
 r

o
u
n
d
s

Rounds for iteration until error is less than 0.010000

Conjugate Gradient

Preconditioned Conjugate Gradient

Figure 6: When density =
16

i
, the iterations

switch between those two so far.

2.5 The density for which PCG and CG takes the same
amounts of iteration

Following from the discussion in Section 2.4, PCG (Jacobi) and CG have
different iteration rounds for the sparse and the dense matrices. For
sparse matrices, PCG takes fewer iterations. For dense matrices, CG
takes fewer iterations. We are curious about for which density the CG
and PCG will have similar amount of iterations. We choose density to
be 32/i, 16/i, 8/i, 4/i while i denotes the size of the matrix, we find that
when the density equals to 16/i, the two methods take almost the same
amounts of iterations as shown in Figure 6.

3 Comparison between PLU and Gradient Meth-
ods

We have introduced some Gradient Methods for solving the linear sys-
tems. In this section, we will compare the complexity of the algorithm
with traditional linear solver - PLU. The PLU factorization takes a square
matrix as input and an upper triangular matrix and a lower triangular
matrix as output, this process takes about

2

3
n3 flops. Adding the solving

process about 2n2 flops, the total flops is about
2

3
n3 + 2n2.

19

We use the flop tool (https://github.com/Eleven7825/flopTool) to ob-
tain the total flops for CG on matrices generated with method described
in Section 2.3 with different size n. After obtain their flops, we do the
linear regression in log-log scale on those (n,flops) pairs. For the dense
matrices, the relation is about 4.5 * n^3.1 while the sparse situation de-
scribed in Section 2.4 is around 4.8 * n^2.9 (setting repeat = 12, strt

= 3, stop = 8, using Equation (6) to calculate rk). Thus, CG is roughly a
O(n3) algorithm.

Data motion is another factor for the performance of an algorithm [2].
The advantage for CG is that it never forms or stores the matrix A [1], the
data motion for CG is lower than that of PLU. This can explain why CG
is faster than PLU. Thus, we are going to use CG and PCG as our linear
solver in the next step for the matrices with relatively larger sizes.

4 Conclusion
In this report, we describe the Steepest Descent, Conjugate Gradient
Method, and Preconditioned Conjugate Gradient Method. We summarize
Shewchuck’s introduction on gradient method, and made our description
short yet self-contained. After that, we describe the preconditioning and
its application on CG.

To compare those Gradient Methods, we compare the flops at each
iteration at first. We find that the leading term for CG, SD, and PCG
are the same, so we decide to compare those three methods based on
numbers of iteration. For SD, we find that the iterations may exceed the
theoretical boundary because of the roundoff error. We conclude that CG
is a better linear solver than SD based on the number of iteration. For
CG and PCG, we conclude that Jacobi preconditioned version of PCG is
better than CG for sparse matrices while CG is better for dense matrices.
We also explore the density for which PCG and CG have similar amount
of iterations.

For the comparison between Gradient Methods and PLU, although
PLU takes fewer flops than CG, CG is more data motion friendly than
PLU, PLU can help us solve the smaller linear systems.

Based on the discussion above, we write a linear solver in Matlab code

20

https://github.com/Eleven7825/flopTool

and Figure 7 is the flowchart of the linear solver program.

Size match?

Input A and b ERROR

n ≤ 32?

Use PLU

A symmetric?

B = A, y = b

B = ATA, y = AT b

Use PCG Use CG

No

Yes

Yes

No

No

Yes

density ≤ 16/n and all elements on
diagnal of B are non-zeroYes No

Figure 7: The flowchart of the linear solver program

References
[1] Stephen Boyd and J Duchi. Ee364b: Convex optimization ii. Course

Notes, http://www. stanford. edu/class/ee364b, 2012.

[2] Gene H. Golub. Matrix Computations. 1983.

[3] Wen Shen. Introduction To Numerical Computation, An. World Scien-
tific, 2019.

[4] Jonathan Richard Shewchuk et al. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

21

[5] Ya-xiang Yuan. A new stepsize for the steepest descent method. Jour-
nal of Computational Mathematics, pages 149–156, 2006.

22

	Gradient Methods
	Steepest Descent Method
	Conjugate Gradient Method
	Condition number
	Conditioning

	Convergence
	Relative error measurement
	Flops at each iteration
	Number of iteration comparison - SD and CG
	Number of iteration comparison - CG and PCG
	The density for which PCG and CG takes the same amounts of iteration

	Comparison between PLU and Gradient Methods
	Conclusion

